Logic Programming

(Declarative Languages)

Review of Predicate Calculus

· A proposition can be thought as a logical statement that may or may not be true.

Formal Logic

· was developed to provide a method for describing propositions and to check their validity.

Symbolic Logic

· We talk about symbolic logic

1) to express propositions

2) to express relationships between propositions

3) to describe how new propositions can be inferred from other propositions that are assumed to be true

· The particular form of symbolic logic that is used for logic programming is called First-order Predicate Calculus.

Propositions

· The object in logic programming

· Propositions are represented by

· simple terms (constants or variables)

· a constant is a symbol that represents an object

· a variable is a symbol that can represent different objects at different times

Simple propositions

· atomic terms which consist of compound terms

· a compound term is an element of a mathematical relation

· a compound term is composed of two parts

· a functor

· this is the function symbol that names the relation

· an ordered list of parameters which together represent an element of the relation

· Example

[image: image1.png]

· Constants: man, jake, like, bob, steak

· There is no intrinsic semantics
The proposition like(bob, streak) means whatever we want.

· bob likes steak

· bob is similar to steak

· Propositions can be stated in two modes:

1) facts – defined to be true

2) queries – it has to be determined

Compound Propositions

· two or more atomic propositions connected by logical connectors

· Precedence

· ¬

· ⋁ ⋀ ≡

· ⊃

· Example

· a ⋀ b ⊃ c

Quantifiers

· Example

1) ∀x(woman(x) ⊃ human(x))

2) ∃x(mother(mary, x) ⋀ male(x))

· mary has a son

Clausal Form

· A proposition in a clausal form has the following general syntax:

· B.1 ⋁ B.2 ⋁ B.3 ⋁ ... ⋁ B.n ⊂ A.1 ⋀ A.2 ⋀ A.3 ⋀ ... ⋀ A.m
 (consequent) (antecedent)

· where A's and B's are terms

· Meaning: If all A's are true then at least one B is true

· Existential quantifiers are not required

· Universal quantifiers are implicit in the use of variables in the atomic proposition

· Operators: only conjunction and disjunction

· All predicate calculus propositions can be algorithmically converted to clausal form.

· Examples

1) likes(bob, trout) ⊂ likes(bob, fish) ⋀ fish(trout)

2) father(louis, al) ⋁ father(louis, violet) ⊂ father(al, bob) ⋀ mother(violet, bob) ⋀ grandfather(louis, bob)

· Meaning: If al is bobs father and violet is bobs mother and louis is bobs grandfather then louis is either als father or violets father.

Resolution Principle

· theorem proving

· Alan Robinson (at University of Syracuse 1965)

· Resolution is an inferential rule that allows inferred propositions to be computed from given propositions

· Example

p1 ⊂ p2

q1 ⊂ q2

if p1 is identical to q2

then we can rewrite the above mentioned propositions as

T ⊂ p2

q1 ⊂ T

this can be expressed as

q1 ⊂ p2

· The process of inferring this proposition from the original two propositions is resolution.

· Example

older(mary, jake) ⊂ mother(mary, jake)

wiser(mary, jake) ⊂ older(mary, jake)

 ..

 (resolution)

 ..

wiser(mary, jake) ⊂ mother(mary, jake)

Unification

· To find variables that allows the matching process to succeed is called unification.

Prolog Example

· Assume we have the following facts (Prolog program):

parent(pam, bob)

parent(tom, bob)

parent(tom, liz)

parent(bob, pat)

parent(pat, jim)

parent(bob, ann)

· This program consists of six clauses

· For example, “parent(pat, jim)” is a particular instance of the parent relation. Thiat instance is called a relationship.

· When this program has been communicated to the prolog system we can pose questions about the parent relation

? - parent(bob, pat)

· Is bob a parent of pat?

· Answer: yes

? - parent(liz, pat)

· Answer: no

· The program does not mention anything about liz being a parent of pat

? - parent(tom, ben)

· Answer: no

· The program has not even heard of the name ben

? - parent(x, liz)

· Who is liz's parent?

· Answer: x = tom

? - parent(bob, x)

· Who are bobs children?

· Answer: x = ann

· You get one result

· Additional results can be obtained by using a semicolon

· ; Answer: x = pat

· ; Answer: x = no

· No more results

? - parent(x, y)

· Who is a parent of whom?

· Find x and y such that x is a parent of y

· Answer: x = ann / y = bob

· ; Answer: x = tom / y = bob

· ; Answer: x = tom / y = liz

· ...

· We can stop the stream at anytime with a period instead of a semicolon

? - parent(y, jim), parent(x, y)

· Who is a grandparent of Jim?

· who is a parent of jim
assume that this is some y

· who is a parent of y
assume that this is some x

· equivalent to

· parent(y, jim) ⋀ parent(x, y)

· Answer: x = bob / y = pat

? - parent(tom, x), parent(x, y)

· Who are Tom's grandchildren?

· Answer: x = bob / y = ann

· ; Answer: x = bob / y = pat

? - parent(x, ann), parent(x, pat)

· Do ann and pat have a common parent?

· Who is a parent, x, of ann

· Who is a parent, x, of pat?

· Answer: x = bob

Instantiation

· The binding of a value (and type) to a variable

· Instantiations last only as long as it takes to satisfy one complete goal (query) which involved the proof or disproof of one proposition

Structures

· Structures represent the atomic proposition of predicate calculus

· The general form of structures is

function(parameter list)

· where function is an atom used to identify the structure

· Structures are the means of specifying facts in Prolog

Fact Statements

· They are used to construct the hypothesis or database of assumed information, These are the statements from which new statements can be inferred

Basic Statement Forms

1) Headless Horn Clauses

2) Headed Horn Clauses

· The simplest form of a headless horn clause is a single structure

· A single structure is interpreted as an unconditional assertion or fact.

· In Logic

· Facts are simply propositions that are assumed to be true.

· Example

female(mary)

father(mary, jake)

· Rule Statements (headed horn clause)

· In rule statements, conclusions can be drawn if the set of the given conditions is satisfied.

<term>
:-
<term1>, <term2>, <term3>, ... , <term-n>

(consequent)

(antecedent)

(then part)

(if part)

· The general form

<consequent>
:-
<antecedent_expression>

· Example

ancestor(mary, shelly) :- mother(mary, shelly)

Extending the Prolog Example

· Add information about sex of the people that appear in the parent relationship:

female(pam)

male(tom)

male(bob)

female(liz)

female(pat)

female(ann)

female(jim)

· all the above are unary relationships
we can define a binary relation by

sex(pam, female)

· Add information about offspring

offspring(liz, tom)

· we can also define offspring in a more elegant way

For all x and y
 y is an offspring of x if x is a parent of y

 offspring(y, x) :- parent(x, y)
 (head) (body)

· offspring(liz, tom) :- parent(tom,liz)

Answer: yes

· Let us add the mother relation:

· mother

for all x and y

x is the mother of y if

x is a parent of y and x is a female

mother(x, y) :- parent(x, y), female(x)

· Grandparent

grandparent(x, z) :- parent(x, y), parent(y, z)

· Sister

sister(x, y) :- parent(z, x), parent(z, y), female(x)

Predecessor

· for all x and z,

x is a parent of z if

there is a y such that

1) x is a parent of y and

2) y is a predecessor of z

predecessor(x, z) :- parent(x, z)

predecessor(x, z) :- parent(x, y), predecessor(y, z)

List

· [] the empty list

· List notation

· []

· [1] -> (1, [])

· [1, 2, 3] -> (1, (2, (3, [])))

· A list consists of two parts (head, tail)

· the first item is the head of the list

· the remaining part of the list is called the tail

· Example

[1 | x] -> .(1, x)

[1, 2 | x] -> .(1, .(2, x)

[1, 2 | [3, 4]] -> [1, 2, 3, 4]

· Append:

· ?- append([1, 2], [3, 4], z)

· z = [1, 2, 3, 4]

· If we need to know what [3, 4] can be append to that will result in the following list:
[1, 2, 3, 4]

· ?- append(x, [3, 4], [1, 2, 3, 4])

· x = [1, 2]

· Operations on lists

· select

· reverse

· member

· sort

· concatenate

· delete

· . . .

 man(jake)

 

 functor parameter

 (1-tuple example)

 like(bob, steak)

 

 functor parameters

 (2-tuple example)

Name�
Symbol�
Example�
Meaning�
�
negation�
¬�
¬ a�
not a�
�
conjunction�
⋀�
a ⋀ b�
a and b�
�
disjunction�
⋁�
a ⋁ b�
a or b�
�
equivalence�
≡�
a ≡ b�
a is equivalent to b�
�
implication�
⊂

⊃�
a ⊃ b

a ⊂ b�
a implies b

b implies a�
�

Name�
Symbol�
Meaning�
�
universal�
∀x.p�
For all x, p is true�
�
existential�
∃x.p�
There is a value for x such that p is true�
�

