Group 2 Notes: Brett Downs & Ignacio Garcia
- Turing machines are extremely basic symbol-manipulating devices which can be adapted to recreate the logic of any computer that could be built. These machines were described by Alan Turing in 1936.
- Von Neumann Architecture refers to a computer design model that uses a single storage structure to hold both instructions and data, this kind of computer implements a Turing Machine.

-There are different ways one can calculate functions.

Alonzo Church

-The Church–Turing thesis stated that Turing machines and recursive functions are equivalent.

-"Every 'function which would naturally be regarded as computable' can be computed by 

a Turing machine."-Alonzo Church
- Because any computer program can be translated into a Turing machine, and any Turing machine can be translated into any general-purpose programming language, we know that any general-purpose programming language is sufficient to express any algorithm.
Primitive Recursive Functions


F:  N    (     N
·         (
 Natural         Natural

 Number        Numbers

Initial functions (primitive recursive functions)


-Zero function: Z(x) = 0
(xЄN

-Successor function: S(x) = x + 1
(xЄN


-Projection function:  Pnk(x1, x2, x3, x4,…,xn-1,…,xn) = xk
1 < k < n



-n = # of arguments 
-k = one in which is selected


-Using these functions we can create recursive functions.

Rules


Composition

-Suppose the functions g1, g2, g3…, gm, and h are primitive recursive, where the 


domain of g1 is Nn, and the domain of h is Nm ( arguments.

x` = ( x1, x2, x3,…, xn) Then f(x) = h(g1(x`), g2(x`), g3(x`),…,gm(x`))  is primitive recursive.

Recursion

-Suppose g and h are primitive recursive functions, where the domain of g is in Nn and the domain of h is Nn+2.  Then the pair of equations:

1) f(x`, 0 ) = g(x)
Boundary Condition(Stop)

2) f(x`, y+1) = h(x`,y, f(x`,y))
Recursion equation

Defines a primitive recursive function with domain Nn+1.


Ex

ADD(X,Y) = X + Y



Formal Definition:



ADD(X,0) = I(X) = P11(X) = X



ADD(X,Y+1) = H`(X, Y, ADD(X,Y))



H(X,Y,Z) = S(P33(X, Y, ADD(X,Y))



ADD(2,3) =


= S(P33(2,3,ADD(2,2)))


= S(P33(2,3, S(P33(2,2, ADD(2,1)))))


= S(P33(2,3, S(P33(2,2, S(P33(2,1, ADD(2,0)))))))


= S(P33(2,3, S(P33(2,2, S(P33(2,1,2))))))


= S(P33(2,3, S(P33(2,2, S(2)))))


= S(P33(2,3, S(P33(2,2,3))))


= S(P33(2,3, S(3)))


= S(P33(2,3,4))


= S(4)


= 5


Multiplication

MUL(X,0) = Z(X)


MUL(X, Y+1) = H(X,Y,MUL(X,Y))


H(X,Y,Z) = ADD(P31(X,Y,Z), P33(X,Y,Z))



    Or



        ADD(X,Y,MUL(X,Y))


Factorial

FAC(X) = X!


FAC(0) = 1


FAC(X+1) = MUL(X+1,FAC(X))


Pred


PRED(0) = Z(0)


PRED(Y+1) = P21(Y, PRED(Y))

λ-Calculus
-The goal of λ-calculus is to simplify the notion of computable functions.

-A calculus is a notation that can be manipulated mechanically to achieve some end.

-One reason for developing a calculus is that, by reducing some process to a set of simple mechanical rules, one decreases the chance of making errors.

Scope

-Scope: where a variable is visible to a range of statements or where the variable can be accessed.

-Binding: declared in, accessible, etc

-Bound Identifiers: are often called bound variables
Ex:
(ni=1 i2 + 1
“i” is the bound identifier

-bound identifiers can change without altering the meaning of a formula.

-If we change a free variable we change the meaning of the expression

-The binding site for an identifier determines the scope of the identifier

Ex:

{x | x > 0} = {y | y > 0}

(x[x + 1 > x] = (y[y + 1 > y]

Ex:

I(nj=1 j2 + I – 9

-bound Identifier is “j”

-free variable is “i”

-j is bound by the summation operation(() which is called the binding state

Ex:

-j is free in j2 + I – 9 but bound in (nj=1 ai2 j2

Scope Ex:

 Scope of x

         _|_

{x | x > y }

  |    |     |

  |    |     Free occurrence of y

  |    Bound occurrence of x

  Binding site of x

Ex:

Program

|
Var x


|
Procedure

_

|
|
Var y

  |

|
|


  |______Scope of y

|
|


  |

|
|_


_|

|
End

|

|_

End
Nested Scopes Ex:

(mI=1I (nj=1 j + I - a

|          |________| |

|
     |           |

|      Scope of j
     |

|______________|

             |

        Scope of I

λ-Calculus
-It is a theory of functions developed by Alonzo Church.

-In 1920 Moses Schonfinkel developed a theory of functions base of “combinations”

-From that in 1930 Haskell curry rediscovered and extended schonfinkel’s theory and showed that it was equivalent to λ-Calculus.

-From there in 1930 Alonzo Church developed λ-Calculus.

-From there in 1950 S.C. Kleene showed that λ-Calculus was a universal computing system(any computable function can be expressed and evaluated using λ-Calculus).

-From there in 1950 John Mccarthy who was inspired by λ-Calculus, invented the programming language LISP.

- λ-Calculus is equivalent to Turing machines, but λ-Calculus emphasizes the use of transformation rules and doesn’t care about the actual machine implementing them. 

- λ-Calculus is more related to software than hardware.

-The λ-Calculus is a notation for defining functions.

-Any computable function can be expressed and evaluated using λ-Calculus.

-The central concept in λ-Calculus is the expression.

-Each λ expression denotes a function.

-0 is a λ-expression to represent the number zero.
-There are just 3 kinds of λ-expression and using BNF, the syntax of λ-expressions are:

< λ-expression>::= <variable>



       |(< λ-expression>< λ-expression>)



       |( λ(variable>< λ-expression>)

-If V ranges over the class of <variable> and E, E1, E2… range over the syntax of class   < λ-expression>, then the BNF simplifies to:

E ::= V

-Variable


        |(E1,E2)
-Application combination(Procedure call)

        | λV.E
-Abstraction

Ex:

-(λx.x) denotes the identity function

-Functions can be applied to expressions (λx.x)E

-( λx.x*x)5 ( [5/x]x*x ( 5*5

-Function applications are evaluated by substituting the value of the argument:

(λ(x.x)E) ( [E/x]x = y

Ex:
(λx. λP(fx))E

(λf.(fx))[E/x] ( λf.(fE)

If we apply

(λf.(fE))E` ( (fE)[E`/f] ( (E`E)

- λ-Calculus was the basis for LISP

- The meaning of [E/x] = all occurrences of x are substituted by E in the expression to the right.

Ex:

(λx.x)y ( [y/x]x ( y

(λx.x)y ( λy.y ( y

((λx.λy.x+y 2)3) ( (λy.x+y 2)[3/x] ( (λy.3+y 2) ( (3+y)[2/y] ( (3+2) ( 5

Conversion Rules

-An arithmetic expression like (2+3)*5 can be represent as a λ-expression and its value 25 can also be represented as a λ-expression.

-The process of simplifying (2+3)*5 is called conversion or reduction.

1)”Renaming Rule”((-conversion or (-reduction)

-one expression may be replace to another by changing a bound identifier throughout its scope to any other identifier that doesn’t occur within that scope.

One Abstraction of the form λv.E can be converted to λv.E[v’/v] provided that the substitution v’ for v is valid in E
Ex:

λx.x2+2x+1 (( 
λm.m2+2m+1

Ex:

λx.x (( 
λa.a ((
λg.g (( 
λh.h

Ex:

λx.λy.x+y (( 
λa.λy.a+y

Substitution Rule (β-Reduction or β-Conversion)

· Any application of the form (λV.E1)E2 can be converted to E1 [E2/V] provided the substitution of V in E1 is valid.
· β-Reduction is like the evaluation of a function call in a programming language in (λV.E1)E2 the body of the function λV.E1 is evaluated in an environment in which the “formal parameter” V is bound to the “actual parameter” E2
Ex: 

(λx.F(x))E ( 

F(E) 

Ex: 

(λx.λy.add xy)3 ( 

(λy.add x3)

Ex: 

(λy.add 3y)4 ( 

(add 34) ( 

7

Non-valid Ex: 

(λx.λy.add xy)(Square y) ( 

(λy.add (Square y)y)

· (λy.add xy)[(Square y)/x] is not valid because y is free in (Square y) but becomes bound after substitution for x in (λx.λy.add xy)
Ex: 

(λx.λy.x+y)12 ( 

(λy.1+y)2 ( 

(1+2) ( 

3

Ex: 

(λx.λy.(x)2*y) (λz.z+1)5 (
(λy.(λz.z+1)2*y)5 (
((λz.z+1)2*5) ( 

(λz.z+1)10 ( 

10+1 ( 

11

Ex: 

(λx.λy.yx)(+3 4) (λx.+x 2) ( 

(λy.y(+3 4)) (λx.+x 2) ( 

((λx.+x 2)(+3 4)) ( 

+(+3 4)2 (
+7 2 ( 

9

· In λ-expressions all functions have one variable

· Functions of several variables may be expressed as a function of one variable through “carrying”

· H(x,y) = x+y comes from H:(zxz) ( z

· With carrying we can input one variable at a time into separate functions

· The first function takes the first argument, x, and returns a function that will take the second variable, y, and will in turn provide the desired output to create the same function by carrying

· F:z( (z(z)  G:z(z

· F maps integers to a function while G maps integers to integers

· F(x) returns a function G(x) that provides the appropriate result when supplied with y

· F(2) ( G2 when G2(y) ( 2+y

· F(2)(3) ( G2(3) ( 2+3 ( 5

· In λ-calculus this function is described as (λx.λy.x+y)

· For function applications ((λx.λy.x+y)2)3 ( (λy.2+y)3 ( 2+3 ( 5

· To be able to program significant function in λ-calculus, it is convenient to have a way to attach names to λ-expressions

Ex:       Plusp ( (λx.x ≥ 0)

Minusp ( (λx.x < 0)

Succ ( (λx.x+1)

Square ( (λx.x*x)

Minusp(Succ(2)) (
(λx.x < 0)(Succ(2)) (
(Succ(2) < 0) (
((λx.x+1)2 < 0) ( ((2+1) < 0) ( 3 < 0 ( False
λ-Expressions to handle truth values
(if c TF)

   Selects T if c is true ( (λTF.T) we always select True

   Selects F if c is false ( (λTF.F) we always select False

Ex: 
(Less26)26 ( 

(True)26 ( 
(λTF.T)26 ( 
2

· (True -> E1.E2) ( True E1E2 ( (λTF.T)E1E2 ( E1
· (False -> E1.E2) ( False E1E2 ( (λTF.F)E1E2 ( E2
