Notes on recurive functions

Eurípides Montagne School of Electrical Engineering and Computer Science
University of Central Florida
COP 4020 Programming Languages I

Primitive recursive functions

- A Turing machine is a symbol manipulating device proposed by Alan Turing in 1936 as a model of computation.
- The Von Neumann architecture is a concrete representation of the Turing model of computation.
- Another approach to carry out computation is by means of recursive function theory.

The Church Thesis states that, as computation models, Turing machines and recursive functions are equivalent.

Initial functions

- Recursive function theory is the study of a small initial class of primitive functions which can be used to build a large class of computable functions.
- We can consider that any computable function f can be expressed as a function from (\mathcal{N}) to (\mathcal{N}), where (\mathcal{N}) stands for non-negative integers.

$$
f:(\mathcal{N})^{m} \rightarrow(\mathcal{N})^{n}
$$

where

$$
n, m \in \mathcal{N}
$$

- The initial functions are a set of primitive recursive functions which are accepted as self-evidently computable functions. These functions are: The zero function, The successor function, and the projection function.

Zero Function

The Zero function is a function that always return zero and is defined as:

$$
Z(x)=0 \quad \forall x \in \mathcal{N}
$$

Successor function

The Successor function when applied to x returns $x+$ 1 and is defined as:

$$
S(x)=x+1 \quad \forall x \in \mathcal{N}
$$

Projection function

The projection function selects one of the arguments from the argument list and is defined as:

$$
\Pi_{k}^{n}\left(x_{1}, x_{2}, x_{3} \ldots, x_{k}, \ldots, x_{n}\right)=x_{k} \quad \text { with } 1 \leq k \leq n
$$

where n stands for the number of arguments and k represents the selected argument.

Computing with functions: Using the initial functions one can build other more complex primitive recursive functions by applying the following rules:

Combination: let us f and g be primitive recursive functions defined as:

$$
f: \mathcal{N}^{k} \rightarrow \mathcal{N}^{m} \quad \text { and } \quad g: \mathcal{N}^{k} \rightarrow \mathcal{N}^{n}
$$

with $k, n \in \mathcal{N}$

The combination of these two functions is expressed as:

$$
f \times g: \mathcal{N}^{k} \rightarrow \mathcal{N}^{m+n}
$$

and is defined by:

$$
f \times g(\bar{x})=(f(\bar{x}), g(\bar{x}))
$$

where $\bar{x}=\left(x_{1}, x_{2}, x_{3} \ldots, x_{k}\right)$
Example:

$$
\Pi_{2}^{3} \times \Pi_{3}^{3}(5,4,2)=\left(\Pi_{2}^{3}(5,4,2), \Pi_{2}^{3}(5,4,2)\right)=(4,2)
$$

Composition: let us f and g be primitive recursive functions defined as:

$$
f: \mathcal{N}_{k} \rightarrow \mathcal{N}_{m} \quad \text { and } \quad g: \mathcal{N}_{m} \rightarrow \mathcal{N}_{n}
$$

with $k, m, n \in \mathcal{N}$

The composition of these two functions is expressed as:

$$
g \circ f: \mathcal{N}^{k} \rightarrow \mathcal{N}^{n}
$$

and is defined by:

$$
f \circ g(\bar{x})=g(f(\bar{x}))
$$

where $\bar{x}=\left(x_{1}, x_{2}, x_{3} \ldots, x_{k}\right)$
Example:

$$
S(Z(x))=S(0)=1
$$

Primitive recursion: let us g be a primitive recursive function with arity(number of arguments) n, defined as:

$$
g: \mathcal{N}_{k} \rightarrow \mathcal{N}
$$

and let us h be a primitive recursive function with arity $n+2$, defined as

$$
h: \mathcal{N}_{k+2} \rightarrow \mathcal{N}
$$

then the function f with arity $n+1$ is said to be defined by primitive recursion from g and h if:

$$
\begin{aligned}
f(\bar{x}, 0) & =g(\bar{x}) \\
f(\bar{x}, y+1) & =h(\bar{x}, y, f(\bar{x}, y)) .
\end{aligned}
$$

where $\bar{x}=\left(x_{1}, x_{2}, x_{3} \ldots, x_{k}\right)$
The first equation defines the boundary condition and is applied when last argument is 0 ; the second one is the recursive equation and is applied when the last argument is not 0 .

Examples of primitive recursion:

Example: The ADD function can be defined using primitive recursion as:

$$
\begin{aligned}
A D D(x, 0) & =\Pi_{1}^{1}(x)=x \\
A D D(x, y+1) & =S\left(\Pi_{3}^{3}(x, y, A D D(x, y))\right.
\end{aligned}
$$

Now we can compute $\operatorname{ADD}(3,2)$ as follows:

$$
\begin{aligned}
A D D(3,2) & =S\left(\Pi_{3}^{3}(3,1, A D D(3,1))\right) \\
& =S\left(\Pi_{3}^{3}\left(3,1, S\left(\Pi_{3}^{3}(3,0, A D D(3,0))\right)\right)\right) \\
& \left.=S\left(\Pi_{3}^{3}\left(3,1, S\left(\Pi_{3}^{3}\left(3,0, \Pi_{1}^{1}(3)\right)\right)\right)\right)\right) \\
& =S\left(\Pi_{3}^{3}\left(3,1, S\left(\Pi_{3}^{3}(3,0,3)\right)\right)\right) \\
& =S\left(\Pi_{3}^{3}(3,1, S(3))\right) \\
& =S\left(\Pi_{3}^{3}(3,1,4)\right) \\
& =S(4) \\
& =5
\end{aligned}
$$

The initial functions are primitive recursive and functions built up from the initial functions and a finite application of composition, combination and primitive recursion are also primitive recursive functions.

Constructing more primitive recursive functions:

Example: The MULT function can be defined using primitive recursion as:
$\operatorname{MULT}(x, 0)=Z\left(\Pi_{1}^{1}(x)\right)=0$
$\operatorname{MULT}(x, y+1)=A D D\left(\Pi_{1}^{3} \times \Pi_{3}^{3}(x, y, \operatorname{MULT}(x, y))\right)$.
MULT can be defined as well in a concise form as:
$\operatorname{MULT}(x, 0)=0$
$\operatorname{MULT}(x, y+1)=A D D(x, \operatorname{MULT}(x, y))$.
Using this short notation we will introduce more recursive functions:

Factorial: can be defined as:
$F A C T(0)=1$
$F A C T(y+1)=\operatorname{MULT}(y+1, F A C T(x, y))$.

Predecessor: can be defined as:
$\operatorname{PRED}(0)=0$
$\operatorname{PRED}(x, y+1)=\Pi_{1}^{2}(y, \operatorname{PRED}(y))$.

We can consider predecessor as the inverse of successor (i.e. $\operatorname{PRED}(5)=4$, $\operatorname{Pred}(0)=0$); using PRED we can define MONUS (substraction over the natural numbers).
(Monus) can be defined as:
$\operatorname{MONUS}(0)=\Pi_{1}^{1}$
$\operatorname{MONUS}(x, y+1)=\operatorname{PRED}(\operatorname{MONUS}(x, y))$.

If $x \geq y \operatorname{MONUS}(x, y)$ is $x-y$,
otherwise $\operatorname{MONUS}(x, y)=0$.
The short notation for the function $\operatorname{MONUS}(x, y)$ is $\mathrm{x}-\mathrm{y}$.
Thus the function equality $(E Q(x, y))$ can be defined as:
$E Q(x, y)=1 \dot{-}(y \dot{-} x)=(x \dot{-} y)$
If $E Q(x, y)=1$ then $x=y$ otherwise $E Q(x, y)=0$

