Notes on recurive functions

Euripides Montagne
School of Electrical Engineering and Computer
Science
University of Central Florida
COP 4020 Programming Languages |

Primitive recursive functions

e A Turing machine is a symbol manipulating device
proposed by Alan Turing in 1936 as a model of
computation.

e The Von Neumann architecture is a concrete rep-
resentation of the Turing model of computation.

e Another approach to carry out computation is by
means of recursive function theory.

The Church Thesis states that, as computation mod-
els, Turing machines and recursive functions are equiv-
alent.

Initial functions

e Recursive function theory is the study of a small
initial class of primitive functions which can be
used to build a large class of computable func-
tions.

e We can consider that any computable function f
can be expressed as a function from (N) to (N),
where () stands for non-negative integers.

[— (A"
where

n,meN

e The initial functions are a set of primitive recursive
functions which are accepted as self-evidently com-
putable functions. These functions are: The zero
function, The successor function, and the projec-
tion function.

Zero Function

The Zero function is a function that always return zero
and is defined as:

Z(x) =0 Ve e N

Successor function

The Successor function when applied to x returns x +
1 and is defined as:

S(z)=x4+1 Ve e N

Projection function

The projection function selects one of the arguments
from the argument list and is defined as:

' (x1,20,%3..., Tk, oy Tn) = Tg, withl < k <n

where n stands for the number of arguments and k
represents the selected argument.

Computing with functions: Using the initial
functions one can build other more complex primitive
recursive functions by applying the following rules:

Combination: let us f and g be primitive recursive
functions defined as:

FiNFE SN and g i NF S AT

with k,n € N/

The combination of these two functions is expressed
as:

f X g Nk _)Nm—l—n
and is defined by:
fxg(@) = (f(=),9(T))

where T = (x1,x2, x3..., T1)
Example:

11§ <115 (5,4,2) = (IT§(5,4,2),115(5,4,2)) = (4,2)

3

Composition: let us f and g be primitive recursive
functions defined as:

f i N — Nm and g :Nm— Np

with &, m,n € N/

The composition of these two functions is expressed
as:

gof:NF AT
and is defined by:
fog(@) =g(f(T))

where T = (z1, x2, x3..., T})
Example:

S(Z(x)) = S(0) = 1

Primitive recursion:. let us g be a primitive recursive
function with arity(number of arguments) n, defined
as:

g:Nk—>N

and let us A be a primitive recursive function with arity
n + 2, defined as

h:Nk+2 —>N

then the function f with arity n+ 1 is said to be defined
by primitive recursion from g and A if:

f(z,0) = g(@)
f@,y+1) = h(Z,y, f(T,9)).

where T = (z1, x2, x3..., T})

The first equation defines the boundary condition and
Is applied when last argument is O; the second one
IS the recursive equation and is applied when the last
argument is not O.

Examples of primitive recursion:

Example: The ADD function can be defined using
primitive recursion as:

ADD(z,0) Ii(z) ==
ADD(z,y+1) = SUI§(z,y, ADD(z,y)).

Now we can compute ADD(3,2) as follows:

ADD(3,2) = S(11(3,1,ADD(3,1)))

= S(II5(3,1,5(11§(3,0,ADD(3,0)))))

= S(114(3,1,5(114 (3,0, I{ (3))))))

= S(IIJ(3,1,5(11§(3,0,3))))

= S(114(3,1,5(3)))

= S(I1J(3,1,4))

= 5(4)

=5
The initial functions are primitive recursive and func-
tions built up from the initial functions and a finite ap-
plication of composition, combination and primitive re-
cursion are also primitive recursive functions.

Constructing more primitive recursive functions:

Example: The MULT function can be defined using
primitive recursion as:

MULT(z,0) = Z(Il{(z)) =0
MULT(z,y+1) = ADD(II{ <113 (z,y, MULT (z,y))).

MULT can be defined as well in a concise form as:
MULT(xz,0) =0
MULT(xz,y+ 1) = ADD(x, MULT (x,vy)).

Using this short notation we will introduce more re-
cursive functions:

Factorial: can be defined as:
FACT(0) =1
FACT(y+ 1) = MULT(y+ 1, FACT (x,y)).

Predecessor: can be defined as:
PRED(0) =0
PRED(z,y + 1) = II} (y, PRED(y)).

We can consider predecessor as the inverse of suc-
cessor (i.e. PRED(5)=4, Pred(0)=0); using PRED we
can define MONUS (substraction over the natural num-
bers).

(Monus) can be defined as:
MONUS(0) = II{
MONUS(x,y+ 1) = PRED(MONUS(x,y)).

fx >y MONUS(x,y) isx — v,

otherwise MONUS(z,y) = 0.

The short notation for the function MONUS(x,vy) is
X — V.

Thus the function equality (EFQ(x,y)) can be defined
as:

EQ(z,y) = 1-(y—z) = (z—y)

If EQ(x,y) = 1thenx = y otherwise EQ(x,y) = 0

