
Notes on recurive functions

Eurı́pides Montagne
School of Electrical Engineering and Computer

Science
University of Central Florida

COP 4020 Programming Languages I



Primitive recursive functions

• A Turing machine is a symbol manipulating device
proposed by Alan Turing in 1936 as a model of
computation.

• The Von Neumann architecture is a concrete rep-
resentation of the Turing model of computation.

• Another approach to carry out computation is by
means of recursive function theory.

The Church Thesis states that, as computation mod-
els, Turing machines and recursive functions are equiv-
alent.

1



Initial functions

• Recursive function theory is the study of a small
initial class of primitive functions which can be
used to build a large class of computable func-
tions.

• We can consider that any computable function f

can be expressed as a function from (N ) to (N ),
where (N ) stands for non-negative integers.

f : (N )m → (N )n

where

n, m ∈ N

• The initial functions are a set of primitive recursive
functions which are accepted as self-evidently com-
putable functions. These functions are: The zero
function, The successor function, and the projec-
tion function.

2



Zero Function

The Zero function is a function that always return zero
and is defined as:

Z(x) = 0 ∀x ∈ N

Successor function

The Successor function when applied to x returns x+
1 and is defined as:

S(x) = x + 1 ∀x ∈ N

Projection function

The projection function selects one of the arguments
from the argument list and is defined as:

Π n
k (x1, x2, x3..., xk, ..., xn) = xk with1 ≤ k ≤ n

where n stands for the number of arguments and k
represents the selected argument.



Computing with functions: Using the initial
functions one can build other more complex primitive
recursive functions by applying the following rules:

Combination: let us f and g be primitive recursive
functions defined as:

f : N k → Nm and g : N k → Nn

with k, n ∈ N

The combination of these two functions is expressed
as:

f × g : N k → Nm+n

and is defined by:

f × g(x) = (f(x), g(x))

where x = (x1, x2, x3..., xk)
Example:

Π 3
2 ×Π 3

3 (5,4,2) = (Π 3
2 (5,4,2), Π 3

2 (5,4,2)) = (4,2)

3



Composition: let us f and g be primitive recursive
functions defined as:

f : Nk → Nm and g : Nm → Nn

with k, m, n ∈ N

The composition of these two functions is expressed
as:

g ◦ f : N k → Nn

and is defined by:

f ◦ g(x) = g(f(x))

where x = (x1, x2, x3..., xk)

Example:

S(Z(x)) = S(0) = 1

4



Primitive recursion: let us g be a primitive recursive
function with arity(number of arguments) n, defined
as:

g : Nk → N
and let us h be a primitive recursive function with arity
n + 2, defined as

h : Nk+2 → N
then the functionf with arity n+1 is said to be defined
by primitive recursion from g and h if:

f(x,0) = g(x)

f(x, y + 1) = h(x, y, f(x, y)).

where x = (x1, x2, x3..., xk)

The first equation defines the boundary condition and
is applied when last argument is 0; the second one
is the recursive equation and is applied when the last
argument is not 0.

5



Examples of primitive recursion:

Example: The ADD function can be defined using
primitive recursion as:

ADD(x,0) = Π 1
1 (x) = x

ADD(x, y + 1) = S(Π 3
3 (x, y, ADD(x, y)).

Now we can compute ADD(3,2) as follows:

ADD(3,2) = S(Π 3
3 (3,1, ADD(3,1)))

= S(Π 3
3 (3,1, S(Π 3

3 (3,0, ADD(3,0)))))

= S(Π 3
3 (3,1, S(Π 3

3 (3,0, Π 1
1 (3))))))

= S(Π 3
3 (3,1, S(Π 3

3 (3,0,3))))

= S(Π 3
3 (3,1, S(3)))

= S(Π 3
3 (3,1,4))

= S(4)

= 5

The initial functions are primitive recursive and func-
tions built up from the initial functions and a finite ap-
plication of composition, combination and primitive re-
cursion are also primitive recursive functions.

6



Constructing more primitive recursive functions:

Example: The MULT function can be defined using
primitive recursion as:

MULT (x,0) = Z(Π 1
1 (x)) = 0

MULT (x, y+1) = ADD(Π 3
1 ×Π 3

3 (x, y, MULT (x, y))).

MULT can be defined as well in a concise form as:
MULT (x,0) = 0
MULT (x, y + 1) = ADD(x, MULT (x, y)).

Using this short notation we will introduce more re-
cursive functions:

Factorial: can be defined as:
FACT (0) = 1
FACT (y + 1) = MULT (y + 1, FACT (x, y)).

Predecessor: can be defined as:
PRED(0) = 0
PRED(x, y + 1) = Π 2

1 (y, PRED(y)).

7



We can consider predecessor as the inverse of suc-
cessor (i.e. PRED(5)=4, Pred(0)=0); using PRED we
can define MONUS (substraction over the natural num-
bers).

(Monus) can be defined as:
MONUS(0) = Π 1

1
MONUS(x, y + 1) = PRED(MONUS(x, y)).

If x ≥ y MONUS(x, y) is x− y,
otherwise MONUS(x, y) = 0.
The short notation for the function MONUS(x, y) is
x −̇ y.
Thus the function equality (EQ(x, y)) can be defined
as:
EQ(x, y) = 1−̇(y−̇x) = (x−̇y)

If EQ(x, y) = 1 then x = y otherwise EQ(x, y) = 0

8


