

F Sharp

By Kyle Hunter, Ian Martin, Aaron Ronzo, and Matt Johnson

Overview

● Introduction

● History/Purpose

● Main Features

● Code Examples

● Live Coding Session

● Conclusion

History

● Two separate projects being worked on

– A team at Microsoft Research @ Cambridge wanted a
metalanguage for the .NET platform

– Don Syme working on implementing generics for .NET
● Eventually these two projects were combined to create

F#

– First release: 2005

– Version 2.0: 2010

– Version 3.0: 2012

History

● Version 2.0

– Removal of deprecated functionality

– Async API improved for performance & stability

– Reduce size of library

– Improved support for F# compiler on other OSes
● Version 3.0

– Units of measure type (SI units)

– Type Providers (generate types based on structured data)

– Query Expressions (LINQ – SQL-like queries)

– Parameter help and improved Intellisense in the IDE

Introduction

● Part of the .NET Framework

– Easily integrate with other .NET languages (C#, C++,
Visual Basic)

● Variant of ML (MetaLanguage)

– Largely compatible with OCaml (#light)
● Multi-paradigm programming language

– Primarily functional

Purpose

● To combine multiple programming paradigms into one
language

● To provide a functional language for the .NET platform

● Less overhead for scientists and mathematicians

Features

● Programming Paradigms

– Functional

– Imperative
● Control flow, I/O, Mutable Data, Exception Handling

– Object Oriented
● Data encapsulation, inheritance, polymorphism, type extensions

● Qualities

– Strongly typed
● With type inference

– Immutable w/support for mutable data

– Eager evaluation w/support for lazy evaluation

– Easy (but not automatic) parallelism

Features

● Functional Programming

– Functions are values too

– Currying

– Function compositions and pipelining

– Type inference

– Pattern matching

– Lamba expressions/anonymous functions
● Tuples

● Records

Basics

 Creating a function

 let addOne (x : int) = x + 1

 let addOne x = x + 1

 val addOne : int -> int

Creating a list

 let list = [1..10]

Attach item to list

 let names = [“Kyle”, “Aaron”,
 “Matt”]

 let fullNames = “Ian” :: names

Mapping Data

 let data = [1..10]

 let square x = x * x

 let result = List.map square data

 printfn "%A" result

Mutable Data

 1 let mutable x = 5

 2 val mutable x : int

 3 x <- 10

 1 let names = [| "Kyle"; "Aaaron";
 "Ian"; "Matt" |]

 2 names.[1] <- "Aaron"

 1 let x = ref "Hello"

 2 val x : string ref

 3

 4 x //returns ref instance

 5 !x //returns x.contents

 6 x := "Goodbye"

Imperative & OO

 1 let mutable res = 2

 2

 3 for n = 1 to 10 do

 4 res <- res * n

 5 printfn "%d" res

 1 type Player(n : int) = class

 2 let mutable health = n

 3

 4 member x.printHealth() =

 5 printfn "Health: %d" health

 6

 7 member x.hitByGoblin(damage) =

 8 health <- health - damage

 9 end

10

11 let kyle = new Player(300)

12 let aaron = new Player(300)

13

14 aaron.printHealth()

15 aaron.hitByGoblin(100)

16 aaron.printHealth()

Pipeline Operator & Function Comp.

Pipeline Operator

 1 let square x = x * x

 2 let add x y = x + y

 3 let toString x = x.ToString()

 4

 5 let complexFunc x =

 6 toString (add 5 (square x))

 7

 8 let complexFunc2 x =

 9 x |> square |> add 5

 10 |> toString

Function Composition

 1 let f x = x + 5

 2 let g x = x * x

 3 let fog = f << g //x^2 + 5

 4 let gof = f >> g //(x+5) * (x+5)

Lamba Expressions & Currying

 1 let complexFunc =

 2 2 |>

 3 (fun x-> x * x) |>

 4 (fun x-> x + 5) |>

 5 (fun x -> x.ToString())

 1 let multiply' (x, y) = x * y

 2 let multiply x y = x * y

 3

 4 let double' x = multiply (2, x)

 5 let double = multiply 2

Factorial (3 Examples)

(1)

 1 let rec factorial n =

 2 if n = 0 then

 3 1

 4 else

 5 n * factorial (n - 1)

(2)

 1 let rec factorial n =

 2 match n with

 3 | 0 -> 1

 4 | _ -> n * factorial (n – 1)

(3)

 1 let factorial n =

 2 [1..n] |> List.fold (*) 1

Tuples & Generics

 1 let swap (a, b) = (b, a)

 2 val swap : 'a * 'b -> 'b * 'a

 1 let divrem x y =

 2 match y with

 3 | 0 -> None

 4 | _ -> Some(x / y, x % y)

Sets

 1 let x = Set.ofSeq [1..30]

 2 let y = Set.ofSeq [5..15]

 3 let z = Set.ofSeq [31..35]

 4

 5 Set.iter (fun x -> printf "%d " x) (Set.intersect x y)

 6 Set.iter (fun x -> printf "%d " x) (Set.union x z)

 7 printf "%A" (Set.isSubset y x)

Records
 1 type circle = {

 2 XOrigin : float;

 3 YOrigin : float;

 4 Radius : float;

 5 }

 6

 7 let getDiameter circle =

 8 circle.Radius * 2.0

 9

10 let getPoints circle (rot : float) =

11 (circle.XOrigin + circle.Radius * cos rot,

12 circle.YOrigin + circle.Radius * sin rot)

13

14 let bigCircle = { XOrigin = 0.0; YOrigin = 0.0; Radius = 50.0 }

15

16 printf "%f " (getDiameter bigCircle)

17 printf "%A" (getPoints bigCircle 3.14)

Eager & Lazy Evaluation

 1 let eagerDivision x =

 2 let oneOverX = 1.0 / x

 3 if x = 0.0 then

 4 printfn "Tried to divide by zero"

 5 else

 6 printfn "One over x is: %f" oneOverX

 7

 8 let lazyDivision x =

 9 let oneOverX = lazy 1.0 / x

10 if x = 0.0 then

11 printfn "Tried to divide by zero"

12 else

13 printfn "One over x is: %f" oneOverX

Asynchronous

 1 let rec fib x =

 2 match x with

 3 | 1 -> 1

 4 | 2 -> 1

 5 | _ -> fib(x-1) + fib(x-2)

 6

 7 let fibRange s f =

 8 [s..f] |> List.map (fun x -> async { return fib x })

 9 |> Async.Parallel

10 |> Async.RunSynchronously

11

12 printf "%A" (fibRange 10 20)

Bitwise Functions

 1 let divideByTwoFloor x = x >>> 1

 2 let multiplyByTwo x = x <<< 1

 3 let twosComplement x = ~~~x

 4

 5 let divValues = [1..20]

 6 |> List.map (fun x -> divideByTwoFloor x)

 7 let multValues = [1..20]

 8 |> List.map (fun x -> multiplyByTwo x)

 9 let twosComplements = [1..20]

10 |> List.map(fun x -> twosComplement x)

Conclusion

● Targets .NET platform

– Access to large array of .NET resources/libraries

– High integration with other .NET languages
● Multi-paradigm (Functional, Imperative, OO)

● Supports both immutable and mutable data

● Strongly typed with type inference

● Defaults to eager evaluation, has lazy keyword

● Easy to parallelize (but not automatic)

● Has tuples and records but also create your own types using OO

Sources

● Set theory intersection image

– http://en.wikipedia.org/wiki/Intersection_(set_theory)
● Unit circle image

– http://en.wikipedia.org/wiki/Unit_circle
● Weak/Lazy Evaluation Example

– http://stackoverflow.com/questions/6683830/f-lazy-eva
luation-vs-non-lazy

● Factorial example w/matching

– http://en.wikipedia.org/wiki/F_Sharp_(programming_la
nguage)

http://en.wikipedia.org/wiki/Intersection_(set_theory
http://en.wikipedia.org/wiki/Unit_circle
http://stackoverflow.com/questions/6683830/f-lazy-evaluation-vs-non-lazy
http://stackoverflow.com/questions/6683830/f-lazy-evaluation-vs-non-lazy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

