COP 3930

 Object Oriented Programming

Spring 2001

TEST #2

Name:
____KEY_________________

SSN:

There are six (6) questions, worth 25 points each, for a total of 150 points. Try not to spend too much time on any one question, or leave any questions blank. Good luck!

1. Java provides keywords public, protected, and private to permit specifying varying degrees of encapsulation for the classes we implement. The following table (incomplete) describes the accessibility of a class's attributes and methods by members of the same class, and by members of other classes.

Fill in the remainder of the table, indicating "yes" or "no" for each empty box.

(Hint: the first column -- "Public" -- may be interpreted as meaning, "public attributes within a class are accessible by other members of the class itself, by members of other classes within the same package, by members of subclasses of the class (regardless of the package in which they reside), and by unrelated classes (that is, classes that are neither in the same package nor in any subclasses of the class).")

	
	Public
	Protected
	Package
	Private

	Class itself

	yes
	yes
	yes

	yes

	Package classes

	yes
	yes
	yes
	no

	Subclasses

	yes
	yes
	no
	no

	Unrelated

	yes
	no
	no
	no

2. Most OO languages distinguish between equality and equivalence of objects. Java uses the method equals() for equality, and the operator == for equivalence. Answer, for each of the following cases, the values returned (true or false).

Expression
Value (true or false)

(new Integer(5)).equals(new Integer(5))
__true_

5 == 5
__true_

// Assuming x, y and z are defined as below:

Integer x = new Integer(5);

Integer z = x;

Integer y = x.clone();

x.equals(y)
__true_

x == y
__false_

x == z
__true_

 x z y

3. Show the exact output produced by the main() method of class TestBind.
class A {

void print(){

System.out.println("This is class a");

}

}

class B extends A {

int bnum;

void print(){

System.out.println("This is class b");

}

}

public class TestBind {

public static void main(String[] args) {

A a1 = new A();

B b1 = new B();

A a2;

B b2;

a1.print();

b1.print();

b1.bnum = 5;

a2 = b1;

a2.print();

b2 = (B) a2;

 System.out.println("Bnum "+b1.bnum +" "+ b2.bnum);

}

}

This is class a

This is class b

This is class b

Bnum 5 5

4. Show the exact output produced by the main() method of class TestClone.

class CanClone implements Cloneable {

int val;

public Object clone() throws CloneNotSupportedException {

 return super.clone();

}

}

public class TestClone {

public static void main(String[] args)throws

CloneNotSupportedException {

CanClone c = new CanClone();

CanClone c2;

c.val = 5;

c2 = c;

System.out.println(" Val "+c.val + "; " + c2.val);

c2.val = 4;

System.out.println(" Val "+c.val + "; " + c2.val);

c2 = (CanClone) c.clone();

c2.val = 3;

System.out.println(“Val "+c.val + "; " + c2.val);
}

}

}

Val 5 5

Val 4 4

Val 4 3

5. Show two possible outputs for the main() method of class TwoThreadsTest.

class SimpleThread extends Thread {

public SimpleThread(String str) {

super(str); //sets thread’s name

}

public void run() {

for (int i = 0; i < 3; i++) {

System.out.println(i + " " +getName());

try {

sleep((int)(Math.random() * 1000));

} catch (InterruptedException e) { }

}

System.out.println("DONE! " + getName());

}

}

public class TwoThreadsTest {

public static void main (String[] args) {

new SimpleThread("Jamaica").start();

new SimpleThread("Fiji").start();

}

}

	Possible Output #1
	Possible Output #2

	0 Fiji

0 Jamaica

1Fiji

1Jamaica

2 Fiji

2 Jamaica

DONE! Fiji

DONE! Jamaica

	0 Fiji

1 Fiji

2 Fiji

0 Jamaica

1 Jamaica

2 Jamaica

DONE! Fiji

DONE! Jamaica

6. In programming assignment 2 we implemented a shape hierarchy that included, among other classes, the interface Shape and the abstract class AbstractShape. The Shape interface requires its implementers to provide a name(), area(), and perimeter() method. AbstractShape, which implements the Shape interface, overrides the toString() method it otherwise inherits from class Object. AbstractShape's toString() method returns a reference to a String object that it constructed by concatenating the results produced by the three Shape interface methods. Here is a copy of that method.

public String toString() {
 return "Shape " + name() + " with area = " + area() +
 " and perimeter = " + perimeter();
}

We implemented shape classes Circle, Triangle, MyRectangle, and Square, that directly or indirectly extend class AbstractShape, and as a result, inherit AbstractShape's toString() method.

In our JApplet, we add shapes to a Vector of shapes, and when we press the "List Shapes" button, the name, area, and perimeter of all the shapes we added is displayed. This is accomplished by using an Iterator i to iterate through the shapes Vector, and using System.out.println(), which implicitly invokes the toString() method for its parameters that are not references to String objects. We know references to the shape objects are stored in the Vector as references to class Object. We downcasted (narrowed) the reference type returned by i.next() to be either a reference to interface Shape or class AbstractShape.

Explain why it is not necessary to downcast to print out the shapes. Be sure to mention any object oriented principles that apply.

1. toString() is defined in class Object.

2. Overrode toString() in class AbstractShape (which extends/inherits class Object), so polymorphishm will enable the correct toString() method to be invoked -- the one in class AbstractShape.
(also could mention principle of dynamic binding)
Integer

5

Integer

5

- 6 -

