
COP 3930

 Object Oriented Programming

Spring 2001

TEST #1

Name:
____KEY________________

SSN:

1. What is the relationship between a class and an object? What is an instance of a class? (20 pts.)

A class characterizes the structure of states and behaviors that are shared by all its instances.

An object has a unique identity, a state, and behaviors.

An object is an instance of a class.

2. Define polymorphism as regards both polymorphic variables and polymorphic methods and give a short example. (Hint: it may help to refer to a base class and a subclass in your answer) (20 pts.)

Polymorphism means that a single name can refer to different objects at different times or under different circumstances. A polymorphic variable is a variable that can be a handle for different kinds of objects. A polymorphic method means that the same message can lead to different methods, depending on the message receiver (or in some languages depending upon the entire signature, including the message argument types).

3. Define inheritance and give a short example. (Hint: your answer should discuss a class hierarchy with an is-a relationship) (20 pts.)

Defines a relationship among classes

	
	(super class)

(subclass)

(extends C1 or inherits from C1)

(C2 is-a C1)

4. Encapsulation is one of the principles of Object Oriented Programming. Describe what is meant by Encapsulation and give an example of how Java supports this principle (Hint: private, public) (20 pts.)

The implementation of a module should be separated from its contractual interface and hidden from the clients of the module.

In Java, we can hide instance attributes of a class with the keyword private; the

keyword public makes an instance method of a class available to the class's clients.

5. For each of the following, explain the concepts and provide a small example: (20 pts.)

a. What constitutes the "signature" of a method? (10 pts.)

Its return type, name, and parameters (both # and type).

b. What is the difference between Overloading and Overriding? (Hint: + operator)
(10 pts.)

Overloading -- same operator (method) for different types of objects has different meanings.

Overriding -- redefine method from parent class in one of its subclasses.

6. The first column, exclusive of the numbers, refers to needs and desirable properties that may arise in Java programming or OO design. The second column lists features, techniques or Java methods, classes that help to deal with problems or provide desirable outcomes. Match each feature/technique/method/class to a need/property that it helps to address. Your answers must be provided by filling in the appropriate "need/property" number to the right of the feature/technique/method/class that is designed to address this need. (20 pts.)

	
	Need/property
	
	Feature/technique/method/class
	

	1
	Requires children to implement a method
	
	interface
	__6__

	
	
	
	
	

	2
	Reclaims space associated with unused objects
	
	encapsulation
	__4__

	
	
	
	
	

	3
	Specifies a class's responsibility to clients
	
	garbage collection
	__2__

	
	
	
	
	

	4
	Hides details of implementation
	
	this.
	__5__

	
	
	
	
	

	5
	Gives an object the ability to refer explicitly to its own instance methods and attributes
	
	protocol
	__3__

	
	
	
	
	

	6
	Provides only a protocol that may be implemented by appropriate classes
	
	abstract
	__1__

7. Show the exact output produced by the following main() routine: (10 pts.)

public static void main (String[] args){

int x,y;

x = 5;

y = 1;

while (x>0){

x = x - 1;

y = y * x;

System.out.println(y);

}

}

Output:

4

12

24

24

0

8. Below is a section of code from the first programming assignment. (20 pts.)

Vector gradeComponents = new Vector();

/*

 * Objects added to the vector …

 */

Iterator i = gradeComponents.iterator();

while (i.hasNext()) {

 GradeComponent gc = i.next();

// *** Line with error ***
 totPointsEarned += gc.getEarnedPoints();

 totPointsPossible += gc.getTotalPoints();

 }

 return (int) Math.round(totPointsEarned * 100.0d / totPointsPossible);

b. What variable is an instance of class Vector? (6 pts.)

gradeComponents

b. What instance behaviors of the Iterator class are used in the above code and what are their respective return types? (7 pts.)

hasNext() returns Boolean

next() returns Object

c. Correct the error indicated above. (7 pts.)

GradeComponent gc = (GradeComponent) i.next();

C1

C2

- 1 -

