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Introduction 
 
In the previous set of notes we introduced the multi-way tree and specifically the 
variant known as an m-way search tree.  In this set of notes we will examine a 
special variant of m-way search trees that has important applications in the data 
structures area.   
 
 
2-4 Trees 
 
If there is a maximum value m placed on the number of children that a given 
node may have, the tree is referred to as an m-way tree.  In this section we will 
focus on a common variant of the m-way tree known as a 2-3-4 tree or more 
commonly as a 2-4 tree.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the above definition, rule 1 defines a size property for the 2-4 tree; rules 2, 3, 
and 4 define the ordering property (which identifies the tree as a search tree), 
and rule 5 defines a depth property which determines the balance of a 2-4 tree.  
This depth property ensures that the height of a 2-4 tree containing n key values 
is θ(log2 n).  Figure 1 shows a 2-4 tree containing 13 key values (items) with a 
height of three (not counting the external nodes). 
 
 

Advanced Tree Structures –   2− 4 Trees  

2-4 Tree  
 
A 2-4 tree is an m-way search tree T  in which an ordering is imposed on 
the set of keys which reside in each node such that: 
 

1. Each node has a maximum of 4 children and between 1 and 3 keys. 
 

2. The keys in each node appear in ascending order. 
 

3. The keys in the first i children are smaller than the ith key. 
 

4. The keys in the last m-1 children are larger than the ith key. 
 

5. All external nodes have the same depth. 
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Figure 1.  2-4 tree containing 13 key values. 
 
Insertion into a 2-4 Tree 
 
As with the other types of search trees, the insertion of a new item (k, x), where 
k is the key value of item x, into a 2-4 tree begins with a search for the key value 
k.  Assuming that the item does not already exist, the search will terminate 
unsuccessfully at an external node, let’s call it z.  If v is the parent of this 
external node z, then the new item is inserted into node v and a new child is 
added to v.  Let’s call this new child w, and we know that w is an external node.  
While this insertion technique clearly preserves the depth property of the 2-4 
tree it may well violate the size property.  The problem is that node v may 
already have four children and thus be a 4-node.  Insertion of a new node in this 
manner would cause node v to become a 5-node and thus violate the size 
property. 
 
Any time an insertion occurs in node which is already a 4-node an overflow 
occurs and resolution of the overflow must occur to restore the properties of the 
2-4 tree.  Resolution of the overflow is done via a splitting operation.  Recall that 
we saw this operation when we examined the general m-way search tree.   
 
The definition of the split operation for a 2-4 tree is shown in Figure 2.  The 
splitting operation is shown in Figures 3, 4 and 5. 
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Figure 2 -  Insertion Rules for Overflowing Node. 
 
                                                                                                                                                                  
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Node Splitting.  Overflow creates a 5-node at v. 
 
 
 
 
 
 
 
 

Node v is a 4-node (has four children). 
 

1. Replace node v with two nodes v1 and v2 where” 
 

 v1 is a 3-node with children v1, v2, v3 storing keys k1 and k2. 
 v2 is a 2-node with children v4, v5, storing key k4. 

 
2. If v was the root of the tree, create a new root node u; otherwise, 

let u be the parent of v. 
 
3. Insert key k3 into u and make v1 and v2 children of u, so that if v 

was the ith child of u, then v1 and v2 become children i and i+1 of 
node u respectively. 

h1 h2 

u 

k2 k3 k1 k4 

v = u2 

u1 
u3 

v1 v2 v3 v4 v5 
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Figure 4 – Node Splitting.  Move k3 into u, effectively splitting v. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 – Node Splitting.  Node v is split creating two nodes v1 and v2. 
 
 
The following example illustrates a sequence of insertions into an initially empty 
2-4 tree.  Overflow causing splitting as well as the creation of a new root node 
are illustrated in this example. 
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Example 
 
Sequence of insertions is: 4, 6, 12, 15, 3, 5, 10, and 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Insertion of 4  Insertion of 6   Insertion of 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Insertion of 15 causes   Overflowing node is split causing the  
overflow condition   creation of a new root node 
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12 

15 

4 6 
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Insertion of 3     Insertion of 5 causes overflow 
       and splitting. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 After splitting overflowing 5-node  Insertion of 10 
 
 
 
 
 
 
 
 
 
 
 
 
 

Insertion of 8 

4 6 

(f) 

12 

15 3 5 6 

(g) 

12 

15 4 3 
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12 

15 4 3 6 10 
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Cascade Splitting 
 
Inserting a new item into a node which already contains three items causes the 
splitting operation that we have detailed above.  The problem with this operation 
is that there is no guarantee that the parent of the split node will have room for 
the overflowing item.  Therefore, splitting the child of a parent may well lead to 
the splitting of the parent, which may in turn lead to the splitting of the 
grandparent and so on.  The splitting operation may cascade all the way to the 
root of the tree, which in turn may be split.  Since we are assured that the height 
of a 2-4 tree containing n items has a log2n bound, then the splitting operation is 
bounded by this height and therefore the total time required to perform an 
insertion is O(log2n).  The sequence of 2-4 trees illustrated in Figure 6 shows 
cascade splitting (in the interest of room, the external nodes are not shown in 
this figure). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 – Cascade Splitting.   (a) Initial 2-4 tree.  (b) Insertion causing splitting. 
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(a) Initial tree 
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(b)  Insertion of 17 causing overflow 
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Figure 6 continued – (c) Insertion causes splitting in both parent and grandparent (root in this 

case).  (d) Balanced 2-4 tree after splitting root node in final split of a 
cascade of splits. 

 
 
Deletion from a 2-4 Tree 
 
Deletion of an item from a 2-4 tree proceeds in much the same way as the 
deletion from a BST.  First the item to be deleted must be found in the tree 
which means that a search will be performed in the tree.  Deleting any item from 
the tree can be reduced to the trivial case where the item to be deleted is 
contained in a node that has only external nodes as children.  Suppose that we 
want to remove an item with key k which is stored as the ith item (ki, xi) in node 

5  10   12   15 

3    4 6    8   11 13  14 

(c)  After split caused by insertion of 17    
there is now and overflow condition in 
the root.  Root must now split. 

  17 

  5  10   

3    4 6    8   11 13  14 

(d)  After split of root caused by insertion of 
17 which caused 15 to move to root 
which split the root.  Tree balanced. 

  17 

  12 

  15   
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z, where z has only internal nodes as children.  In order to reduce this deletion 
to the trivial case, we need to swap the item (ki, xi) with an appropriate item that 
is stored at a node v which has only external nodes as children.  To do this we 
need to: 
 

1. Find the right-most internal node v in the subtree rooted at the ith child of 
z, noting that the children of node v are all external nodes. 

2. Swap the item (ki, xi) at z with the last item of v. 
 
Deleting a node in this fashion from a 2-4 tree guarantees that the depth 
property will be preserved since we always delete an external node child from a 
node v with only external-node children.  However, in removing such an external 
node, the technique may violate the size property at node v.  Indeed, if node v 
was previously a 2-node, then it becomes a 1-node with no items after the 
removal and such a node is not allowed in a 2-4 tree.  This type of violation of 
the size property is called an underflow at node v.  To resolve an underflow, we 
check whether an immediate sibling of v is a 3-node or 4-node.  If we find such 
a sibling w, then a transfer operation is performed in which, a child of w is 
moved to v, a key of w is moved to the parent of v  and w (let’s call this parent 
u), and a key of u is moved to v. 
 
 
 
 
 
 
 
 
 
 
If node v has only one sibling, or if both immediate siblings of v are 2-nodes, 
then a fusion operation must be performed, in which node v is merged with a 
sibling creating a new node v′, and a key from the parent u is moved to v′. 
 
 
 
 
 
 
 
 
 
 

Transfer Operation: 
 
Underflow occurs at node v with parent u. 
 

1. Find a sibling w of v that is a 3-node or 4-node. 
2. Move a child of w to v. 
3. Move a key of w to u. 
4. Move a key of u to v. 

Fusion Operation: 
 
Underflow occurs at node v with parent u. 
Node v has only one sibling or both immediate siblings are 2-nodes. 
 

1. Merge v with a sibling to create a new node v′. 
2. Move a key of u to v′. 
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Figure 7 illustrates a transfer operation.  Figure 8 illustrates a fusion operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 – Transfer operation illustrated. (a) Initial tree showing deletion of node containing 4 

which causes underflow.  (b) Identification of sibling w and movement of key 
values in the transfer operation.  (c) Final 2-4 tree after transfer operation is 
completed. 
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(a)  Deletion of 4 causes underflow at node v (it becomes a 1-node) 

v 

5 25 

7 15 18  30 37 58 

u 

(b) Transfer operation.  3-node sibling w is identified. 
       Key movement identified. 

w 

v 
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u 

(c)  2-4 Tree after transfer operation completes.
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15 18 
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Figure 8 – Fusion operation illustrated.  (a) Initial 2-4 tree with deletion of root node 12 

causing underflow at node 11 which takes the place of 12 at the root.  (b) The 
fusion operation.  Moving a key of u to v and the merging of v and its sibling.  (c) 
Final 2-4 tree after  the fusion operation has completed. 
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(a)  Deletion of 12 causing an underflow at 11. 
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(b)  Fusion operation.  Move key of u to v.  Merge v and sibling. 

v′ 

u 
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(c)  2-4 Tree after fusion operation completes.  

108
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A fusion operation at some node v may cause a new underflow to occur at the 
parent u of v, which will in turn trigger a transfer or fusion operation at u.  Thus, 
as was the case with insertion which could cause a cascading split to occur, so 
too with deletion there may occur a cascade of transfer and fusion operations. 
 
You’ll be able to practice these operations in the next set of homework 
problems! 
 
Summary 
 
There is an interesting correspondence between 2-4 trees and red-black trees.  
Given a red-black tree, the corresponding 2-4 tree can be constructed by 
merging every red node v into its parent and storing the item from v at its 
parent.  Conversely, any 2-4 tree can be transformed into its corresponding red-
black tree by coloring each node black and performing the following 
transformation for each internal node v: 
 

 If v is a  2-node, the keep the black children of v as is. 
 
 
 
 
 

 If v is a 3-node, then create a new red node w, give v’s first two black 
children to w, and make w and v’s third child be the two children of v. 

 
 
 

or 
 
 
 
 

 If v is a 4-node, then create two new red nodes w and z, give v’s first two 
black children to w, give v’s last two black children to z, and make w and z 
be the two children of v. 
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