
Self Organizing Lists - 1

Introduction

The justification for skip lists was motivated by the desire to decrease the
expected search time in an n element ordered linear list to O(log n). The basic
requirement to justify the use of the skip list is that the pattern of searching is
assumed to be random. In other words, having searched for a specific element
within the list, the next search is expected to be a random “distance” from the
previous search element. There is no expected correlation between any two
search elements. However, in many search based applications there is a
correlation between search elements. This is an adaptation of the “principle of
locality”. Basically this means that once an element is searched for and found,
chances are high that it will be searched for again in the near future. There are
many different ways that self-organizing lists can be organized; we’ll look at four
of the more common approaches in this set of notes.

[Reference: Hester, James and Hirschberg, Daniel, “Self-Organizing Linear
Search,” Computing Surveys 17, (1985), 137-138.]

[Reference: Valiveti, R. and Oommen, B., “Self-Organizing Doubly Linked
Lists,” Journal of Algorithms 14, (1993), 88-114.]

Organization Methods for Self Organizing Lists

Four of the more common methods for the organization protocol in self-
organizing lists are:

1. Move-to-front method: After locating the search element it is moved to the
logical front of the list.

2. Transpose method: After the search element is located, it is swapped

with its predecessor element.

3. Count method: The order of the elements in the list is maintained based
upon the number of times the element is referenced.

4. Ordering method: The order of the list is maintained using some criteria

which is pertinent to the information maintained in the list. In other words,
some natural ordering of the data based upon some search protocol.

Advanced List Structures – Self Organizing Lists

Self Organizing Lists - 2

We’ll examine each of these organizational methods separately, however
there are some similarities than run across all of the methods. For example,
in the first three methods, all new nodes are inserted into the end of the list
(logical and physical end), while in the fourth method a new node is inserted
into the list at whatever point is appropriate for the search protocol that is
employed. With the first three methods, elements most likely to be the
search element are positioned physically near the beginning of the list, most
explicitly with the move-to-front method and most cautiously with the
transpose method.

Next, we’ll look at each of these four methods is some detail, then do some
analysis on the expected performance of the various methods.

Move-to-front Method

To illustrate the move-to-front method, consider the list shown in Figure 1:

Figure 1 – Singly-linked list – ordered in terms of move-to-front organization

Now assume that an access has occurred to this list in terms of a search for
element “C”. This access will cause the list to reorganize into the one shown
in Figure 2.

Figure 2 – Reorganized list after access to node “C” using move-to-front organization

If the next access happens to be a search for element “A”, the list will
reorganize into the one shown in Figure 3.

Figure 3 – Reorganization of list in Figure 2 after access to element “A”

A B C D E

C A B D E

A C B D E

Self Organizing Lists - 3

After some time has elapsed, in terms of the number of accesses to the list,
the nodes of the list will be ordered from the most recently accessed node to
the least recently accessed node. [Application: Ordering page frames
based upon the least recently accessed page frame is a common page
replacement strategy employed by operating systems in a virtual memory
environment.]

The move-to-front method is a very “optimistic” appraoch to the organization
of the list in the sense that the expectation is that the element on the head of
the list will be searched for again in the immediate future. We’ll discuss the
access patterns a bit later, but for now let it suffice to say that, such a
technique is clearly not optimal if the search pattern is truly random.

Transpose Method

To illustrate the transpose method, consider the list shown in Figure 4:

Figure 4 – Singly linked list – initial state

Suppose that the list in Figure 4 is accessed in a search for the element “D”.
The list shown in Figure 5 results when the list is organized using the
transpose method.

Figure 5 – List of Figure 4 after access of node “D” using transpose organization

Notice that the node just accessed has moved closer to the head of the list,
but has not moved as drastically toward the head as was the case with the
move-to-front method. The transpose method is a much more pessimistic
approach to the reorganization. In other words, it will take repeated
accesses to element “D” to literally move it to the head of the list. This
approach, while still adhering to the principle of locality, does so much more
cautiously (or pessimistically) since it will literally take many consecutive
references to move an element to the head of the list if it is far away from the
head initially. Over a period of time, the list will be ordered so that the most
frequently accessed elements will tend to be positioned toward the head of
the list while the less frequently accessed elements will tend to be positioned
toward the tail of the list. [Application: As before, a common page

A B C D E

A B D C E

Self Organizing Lists - 4

replacement strategy is to replace pages which are among the less
frequently accessed pages.]

Count Method

Although quite similar in many ways to the first two organizational methods,
the count method requires that a counter be associated with each element in
the list which records the number of accesses to that element. The list is
maintained in the order of most number of accesses down to the least
number of accesses. In the event of a tie between two or more elements
with the same number of accesses, the tie is typically broken arbitrarily.

Figure 6 – Singly linked list ordered in terms of the count of references to a node

Figure 7 – List of Figure 6 after access to element C

Figure 8 – List of Figure 7 after an access to element C

After a suitable period of time the list has become organized in a fashion that
places the most frequently access elements near the head of the list and the
least frequently accessed elements near the tail of the list.

Ordering Method

This organizational method is the most flexible of the four organizational
methods we are considering and as such will also prove the most difficult to
analyze with any generality. The organizational criteria for this method can
be any which are suitable for the data/information maintained in the list. For

4

A

2

B

1

C

1

D

1

E

4

A

2

B

2

C

1

D

1

E

4

A

3

C

2

B

1

D

1

E

Self Organizing Lists - 5

example, the order of the list shown in Figure 9 appears to be simply
alphabetical while the list in Figure 10 is ordered based upon GPA.

Figure 9 – Singly linked list ordered alphabetically

Figure 10 – Singly linked list ordered based upon decreasing GPA a node

Maintaining a list of elements based upon what is typically a “non-key” value
is a common database problem in the construction and maintenance of non-
key index structures. [Discuss indices here.]

Insertions into Self-Organizing Lists

Before we get to the analysis of the various forms of the self-organizing lists,
we’ll look at the insertion technique for each of the four organizational
methods.

Insertion with Move-to-front, Transpose, and Count Methods

Figure 11 – Singly linked list – initial state

Assuming that the list in Figure 11 is organized using either the move-to-
front, transpose, or count methods a search for the element containing “K”
would, in each case the resulting list would be configured as shown in Figure
12.

Figure 12 – List of Figure 11 after search for “K” using any one of the organizational
 methods of move-to-front, transpose, or count.

A B C D E

4.0

Keri

3.97

Debi

3.82

Bill

3.31

Don

2.95

Erin

gpa

name

M A Z B E

M A Z B E K

Self Organizing Lists - 6

Insertion using Ordering Method

In this case the location for the insertion is dependent upon the ordering
criteria upon which the list is ordered. Using the example from Figure 10 in
which the list was ordered based upon a student’s gpa, the insertion of a new
student named Mark with a gpa of 3.99 would result in the list shown in
Figure 13.

Figure 13 – List of Figure 10 reorganized after the insertion of new student (Mark, 3.99)

Analysis of Self-Organizing Lists

Analysis of the efficiency of self-organizing lists operating under one of these
four organizational methods is customarily done by comparing their efficiency
to that of optimal static ordering. In an optimal static ordering, all data is
ordered by the frequency of occurrence in the body of data so that the list is
used only for searching and not for inserting new data. With this approach,
two passes through the body of data are required, one to build the list and
another to use the list for searching alone.

What follows in this section has been excerpted primarily from the two
references listed above (as well as some other references) and essentially
amounts to experimental measurements of the efficiency of the self-
organizing lists as a comparison of the actual number of comparisons to the
maximum number of possible comparisons. This latter number is determined
by adding the lengths of the list at the moment of processing the search
element. To illustrate this evaluation technique, we’ll use the information
represented in Table 1 which incorporates a specific access pattern of
searching against that list. Since the list is initially empty, it must be first
constructed based upon the pattern of searches. In addition to the four self-
organization methods, we’ll also keep track of the structure of the list as if it
were ordered based simply on the order of insertion of new elements (i.e.,
not self-organizing).

3.99

Mark

3.97

Debi

3.82

Bill

3.31

Don

2.95

Erin

4.0

Keri

Self Organizing Lists - 7

Self-Organization Method

Search
Element

List
Length
Prior to
Search

Simple List
Move-to-front Transpose Count Ordering

A 0 A (0) A (0) A A A

C 1 A C (1) A C (1) A C A C A C

B 2 A C B (2) A C B (2) A C B A C B A B C

C 3 A C B (2) C A B (2) C A B C A B A B C

D 3 A C B D (3) C A B D (3) C A B D C A B D A B C D

A 4 A C B D (1) A C B D (2) A C B D C A B D A B C D

D 4 A C B D (4) D A C B (4) A C D B D C A B A B C D
A 4 A C B D (1) A D C B (2) A C D B A D C B A B C D
C 4 A C B D (2) C A D B (3) C A D B C A D B A B C D
A 4 A C B D (1) A C D B (2) A C D B A C D B A B C D
C 4 A C B D (2) C A D B (2) C A D B C A D B A B C D
C 4 A C B D (2) C A D B (1) C A D B C A D B A B C D
E 4 A C B D E (4) C A D B E (4) C A D B E C A D B E A B C D E

E 5 A C B D E (5) E C A D B (5) C A D E B C A E D B A B C D E

Table 1 – Illustration of the four self-organization methods

Notice in Table 1 that the access pattern (Column 1 reading down) to the list is
a specific one, namely: A, C, B, C, D, A, D, A, C, A, C, C, E, E consisting of 14
letters, 5 of which are different. The length of the list prior to processing the
search element is shown in the second column, the sum of these numbers is
46. This number is used to compare the number of all made comparisons to
this combined length. Using this technique we can determine what percentage
of the list was scanned during the entire process. For all of the lists except
optimal ordering this combined length is the same; only the number of
comparisons can change. The optimal list for this access pattern in C, A, D, E,
B and requires 32 comparisons. For example, when using the move-to-front
method, 0+1+2+2+3+2+4+2+3+2+2+1+4+5 = 33 comparisons were made (the
number of comparisons made using the different organization strategies is
shown in parenthesis at the end of the lists in Table 1), which is 71.7% when
compared to 46. [33/46 * 100 = 71.7%] Notice that the number 46 represents
the worst case scenario, the combined length of intermediate lists every time all
the nodes in the list are compared. Plain search, with no reorganization,
requires 30 comparisons, which is 65.2%. [30/46 * 100 = 65.2%] [For practice,

Self Organizing Lists - 8

you should determine the efficiency, using this technique for the transpose,
count, and ordering methods of organization.]
The sample data shown in Table 1 is in agreement with theoretical analyzes
which indicate that count and move-to-front methods are, in the long run, at
most twice as costly as the optimal static ordering; the transpose method
approaches, in the long run, the cost of the move-to-front method. In particular,
using amortized analysis, it can be proven that the cost of accessing a list
element with the move-to-front method is at most twice the cost of accessing
this element on the list that uses optimal static ordering. The basics of this
proof follow:

The proof of the statement above uses the concept of inversion. For two lists
containing the same elements, an inversion is defined to be a pair of elements
(x,y) such that in one of the lists x precedes y and in the other list y precedes x.
For example, the list [C, B, D, A] has four inversions with respect to the list [A,
B, C, D], which are: (C,A), (B,A), (D,A), and (C,B). (Recall that the same
concept was used in CS2 when we discussed the various sorting algorithms
that operated on the basis of removing inversions.) The amortized cost is
defined to be the sum of the actual cost and the difference between the number
of inversions before accessing an element and after accessing it,

amCost(x) = cost(x) + (inversionsBefore Access(x) – inversionsAfterAccess(x))

To determine this value, consider an optimal list OL = [A, B, C, D] and a move-
to-front list MTF = [C, B, D, A]. The access of elements usually changes the
balance of inversions. Let displaced(x) be the number of elements preceding x
in MTF but following x in OL. For example, displaced(A) = 3, displaced(B) = 1,
displaced(C) = 0, and displaced(D) = 0. Displaced(A) = 3 since in MTF
elements C, B, and D precede A and in OL these elements follow A. Similarly,
displaced(B) = 1, since in MTF the element C precedes B yet C follows B in OL;
displaced(C) = 0 since in MTF no elements precede C; displaced(D) = 0 since
although elements C and B precede D in MTF, no elements follow D in OL.

Let posMTF(x) be the current position of x in MTF, then posMTF(x) – 1 – dis-
placed(x) is the number of elements which precede x in both lists. For D, this
value will be 2 , and for all other elements this value will be 0. (posMTF(D) – 1 –
displaced(D) = 3 – 1 – 0 = 2; posMTF(A) – 1 – displaced(A) = 4 – 1 – 3 = 0;
posMTF(C) – 1- displaced(C) = 1 – 1 – 0 = 0; posMTF(B) – 1 – displaced(B) = 2 – 1
– 1 = 0).

Now, accessing an element x and moving it to the front of MTF creates a total of
posMTF(x) – 1- displaced(x) new inversions and removes a total of displaced(x)
inversions. The amortized time to access x becomes:

Self Organizing Lists - 9

amCost(x) = posMTF(x) + posMTF(x) – 1 – displaced(x) – displaced(x)

 = 2 (posMTF(x) – displaced(x)) – 1

where cost(x) = posMTF(x).

Accessing element A transforms MTF = [C, B, D, A] into [A, C, B, D] and
amCost(A) = 2(4 – 3) – 1 = 1.
Accessing element B transforms MTF = [C, B, D, A] into [B, C, D, A] and
amCost(B) = 2(2 – 1) – 1 = 1.
Accessing element C transforms MTF = [C, B, D, A] into [C, B, D, A] and
amCost(C) = 2(1 – 0) – 1 = 1.
Accessing element D transforms MTF = [C, B, D, A] into [D, C, B, A] and
amCost(D) = 2(3 – 0) – 1 = 5.

Notice however, that the common elements which precede x on the two lists
cannot exceed the number of all elements preceding x on OL; therefore it must
be that: posMTF(x) – 1 – displaced(x) ≤ posOL(x) – 1, so that we have:

 amCost(x) ≤ 2posOL(x) – 1

The amortized cost of accessing an element x in MTF is in excess of posOL(x) –
1 units to its actual cost of access in OL. This excess is used to cover an
additional cost of accessing elements in MTF for which posMTF(x) > posOL(x),
that is, elements that require more accesses in MTF than in OL.

It is important to remember that the amortized costs of single operations are
meaningful only in the context of sequences of operations. The cost of an
isolated operation will seldom equal its amortized cost; however, in a sufficiently
long sequence of accesses, each access on the average will take at most
2pos(x) – 1 time. Table 2 illustrates the performance of self-organizing lists with
data taken from actual experimental results. The first two columns of numbers
are based upon data from programs and the remaining columns represent
straight English text. Except for alphabetic ordering, all the methods improve
their efficiency as the size of the list increases. The move-to-front and count
methods are essentially the same in their efficiency, and both outperform the
transpose, plain, and ordering methods. The poor performance for smaller lists
is due to the fact that all of the methods are busy including new elements into
the lists, which requires an exhaustive search of the list. Later, the methods will
concentrate on the reorganization geared toward reducing the cost of
subsequent searches.

Self Organizing Lists - 10

Table 2 also contains data for the skip list. Notice the overwhelming difference
in the efficiency of the skip list compared to any of the self-organizing list
techniques. This is to some extent misleading due to the way the data is
presented in Table 2. In Table 2, only comparisons of data are included with no
indication of any other operations required to execute the analyzed methods. In
particular, there is no indication of how many references are used and “relinked”
(the “backtracking” that occurs in the movement through the hierarchy of lists
that comprise the skip list). If this information were included, the difference
between the various self-organizing methods and the skip list would be less
dramatic that it appears in Table 2.

Type of data in the List Different
Words/ All
Words Program data English Text
Reorganization
Strategy 149/423 550/2847 156/347 609/1510 1163/5866 2013/23065

Optimal 26.4 17.6 28.5 24.5 16.2 10.0

Plain 71.2 56.3 70.3 67.1 51.7 35.4
Move-to-Front 49.5 31.3 61.3 54.5 30.5 18.4

Transpose 69.5 53.3 68.8 66.1 49.4 32.9
Count 51.6 34.0 61.2 54.7 32.0 19.8

Alphabetic
Order 45.6 55.7 50.9 48.0 50.4 50.0

Skip List 12.3 5.5 15.1 6.6 4.8 3.8

Table 2 – Efficiency of Self-organizing lists using (number of data comparisons)/(combined
length) expressed as a percentage.

Summary

As the data in Table 2 suggests, empirical results indicate that for lists of
modest size, the generic linked list suffices. With an increase in the amount of
data and/or an increase in the frequency with which list elements need to be
accessed, more sophisticated methods and data structures will be required.

Self Organizing Lists - 11

Answers to practice problem mentioned on page 7.

Self-organization Methods
Search

Element

List
Length
Prior to
Search

Simple List
(insert order) Transpose Count Ordering

A 0 A (0) A (0) A (0) A (0)

C 1 A C (1) A C (1) A C (1) A C (1)

B 2 A C B (2) A C B (2) A C B (2) A B C (2)

C 3 A C B (2) C A B (2) C A B (2) A B C (3)

D 3 A C B D (3) C A B D (3) C A B D (3) A B C D (3)

A 4 A C B D (1) A C B D (2) C A B D (2) A B C D (1)

D 4 A C B D (4) A C D B (4) D C A B (4 A B C D (4)
A 4 A C B D (1) A C D B (1) A D C B (3) A B C D (1)
C 4 A C B D (2) C A D B (2) C A D B (3) A B C D (3)
A 4 A C B D (1) A C D B (2) A C D B (2) A B C D (1)
C 4 A C B D (2) C A D B (2) C A D B (2) A B C D (3)
C 4 A C B D (2) C A D B (1) C A D B (1) A B C D (3)
E 4 A C B D E (4) C A D B E (4) C A D B E (5) A B C D E (5)

E 5 A C B D E (5) C A D E B (5) C A E D B (4) A B C D E (5)

For the transpose method the count of comparisons is 31. This gives us:
(31/46)*100 = 67.39%.

For the count method the total number of comparisons is 34. This gives us:
(34/46)*100 = 73.91%.

For the ordered method the total number of comparisons is 35. This gives us:
(35/46)*100 = 76.08%

