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Parallel Algorithm Pseudocode Conventions for Mesh Models – Continued 
 
Read/Write Statements 
 
We will assume the existence of two parallel I/O statements, read for input and 
write for output.  Suppose, for example, that we have a list of n values stored 
sequentially in the input device.  These n values might be read into a one-
dimensional mesh MP by the following statement: 
 
 for Pi, 1 ≤  i ≤ n do in parallel 
  read(Pi: L) 
 end in parallel 
 
This in parallel  statement simultaneously reads the ith value in the external 
input device into the variable Pi:L in the local memory of processor Pi, i ∈{1, …, 
n}. 
 
Typically, when using read or write statements in a procedure or function,  a 
dcl statement is included which covers all variables participating in I/O, together 
with range descriptions when interconnection models are considered (the range 
variable is not required for PRAM models due to the shared nature of the 
memory).  Also, the terms external input and external output will be utilized in 
the opening syntax. 
 
 
Algorithms for the Mesh Model 
 
As we did for the PRAM model, we now will develop a complete algorithm for 
searching on the two-dimensional mesh model. 
 
Recall from our earlier discussions of this algorithm, that similar to the PRAM 
algorithm for the same problem, the 2-d mesh algorithm for searching consisted 
of three distinct phases, the first of which was broadcasting phase in which the 
value of the search element x was broadcast as a distributed element to all the 
participating processors.  Using the pseudocode that we have developed for the 
interconnection network models, this algorithm would have the pseudocode 
shown in Figure 1. 
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Figure 1 – Parallel pseudocode algorithm for broadcasting in a 2D mesh. 
 
 
The second phase of the algorithm begins after the search value has been 
broadcast through the distributed variable. Each processor Pi, j in parallel 
compares Pi,j: L to Pi,j: x and writes the value ∞ into Pi,j: index if Pi,j: L ≠ Pi,j: x.  
This comparison is accomplished using the pseudocode shown in Figure 2. 
 
 
 
 
 
 
 
Figure 2 – Pseudocode to perform the parallel search in the 2d mesh. 
 
 
The third and final phase of the algorithm consists of a reverse broadcast 
technique to filter the minimum processor index value into processor P1,1.  The 
algorithm for this final phase is shown in Figure 3. 
 
 
 
 
 
 

procedure broadcast2Dmesh (P1,1:x, n) 
 
model: Two-dimensional mesh Mq,q with p = n = q2 processors 
 
input:  P1,1:x (element to be broadcast) 
 
output: P1,1:x (element is broadcast to each processor in Mq,q) 
 
 for i := 1 to  q-1 do 
      P1, i+1:x ⇐ P1, i: x  {propagate x to right across first row} 
 endfor 
 
 for i := 1 to q-1 do 
      for Pi, j, 1 ≤ j ≤ q do in parallel 
             Pi+1, j:x ⇐ Pi, j: x {propagate x down row by row} 
      end in parallel 
 endfor 
 
end broadcast2Dmesh 

for Pi, j, 1 ≤ i, j ≤ q do in parallel 
    if Pi, j: L ≠ Pi,j: x then 
 Pi, j: index := ∞ 
     endif 
end in parallel 
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Figure 3 – Pseudocode parallel algorithm for reverse broadcast technique. 
 
Having developed the necessary pseudocode for the three basic phases of our 
searching algorithm on the 2-d mesh, we can now put the pieces together and 
present our complete searching algorithm which is shown in Figure 4.   Recall 
that we will input the search value to the front end processor as a front end 
variable as opposed to a distributed variable that has an instantiation in each 
processor. 
 
 
 
 
 
 
 
 
 
 

function min2Dmesh (x, n) 
 
model: Two-dimensional mesh Mq,q with p = n = q2 processors 
 
input: x (a list of n numbers)   range: Pi, j, 1 ≤ i, j ≤ q 
 
output: min {x1, x2, …, xn} 
 
 for row := q-1 downto 1 do {compute column minimums} 
      for Pi, j, i = row .and. 1 ≤ j ≤ q do in parallel 
    {compute (i+1)st row and ith row minimums in parallel} 
    Pi, j: temp ⇐ Pi+1, j: x  {communicate up from x to temp} 
    x := min{x, temp}  {compute min of Pi, j: x and Pi, j: temp} 
       end in parallel 
 endfor 
 
 {compute first row minimum sequentially} 
 for column := q-1 downto 1 do 
      for Pi, j, i = 1 .and.  j = column do in parallel 
  Pi, j: temp ⇐ Pi, j+1: x  {communicate left from x to temp} 
  x := min{x, temp}    {only P1, j is active} 
      end in parallel 
 endfor 
 return( P1,1: x) 
 
end min2Dmesh 
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Figure 4 – Complete searching algorithm in parallel pseudocode for 2d mesh. 
 
Performance Measures for Parallel Algorithms 
 
SIMD computers have the property that all the active processors (remember 
that some may be idle on a given parallel step) perform the same operation (on 
possibly different data) during any parallel step.  The set of these common 
operations performed during a parallel step is known as a parallel basic 
operation.  The best-case, average, and worst-case complexities of a parallel 
algorithm are defined in terms of the number of parallel basic operations 
performed.  For example, the worst-case complexity W(n) of a parallel algorithm 
using p(n) processors is defined to be the maximum number of parallel basic 
operations performed by the algorithm over all inputs of size n.  The best-case 
complexity B(n) and average complexity λ(n) are defined in a similar manner. 
 
For parallel algorithms, the number of parallel basic operations performed 
usually depends only on the size of the input n, so that the best-case and 
average complexities are the same as the worst-case complexity. 
 
One measure of the performance of a parallel algorithm results from comparing 
W(n) to the smallest worst-case complexity W*(n) over all sequential algorithms 

function search2Dmesh( L, n, x, index) 
 
model: two dimensional mesh Mq,q with  p = n= q2 processors 
 
input:  L (a list of elements)  range: Pi, j, 1 ≤ i, j ≤ q 
  x (a search element)  range: front end variable 
  index (Pi, j: index = (q-1)i + j) range: Pi, j, 1 ≤ i, j ≤ q 
 
output: the smallest row-major index where x occurs in L, or ∞ if x is ∉ L 
 
 P1,1: x = x 
 call broadcast2Dmesh( P1, 1: x, n) 
 for 1 ≤ i, j ≤ q do in parallel 
      if Pi, j: L ≠ Pi, j: x then 
  Pi, j: index := ∞ 
      endif 
 end in parallel 
 return(min2Dmesh(index, n)) 
 
end search2Dmesh 
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for the problem.  This leads to the formal definition of the speedup S(n) of the 
parallel algorithm shown in Figure 5. 
 
Speedup of a Parallel Algorithm 
 
Let W(n) denote the worst-case complexity of a parallel algorithm for solving a 
given problem, and let W*(n) denote the smallest worst-case complexity over all 
known sequential algorithms for solving the same problem.  Then the speedup 
S(n) of the parallel algorithm is defined by: 
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Figure 5 – Definition of the speedup of a parallel algorithm in terms of sequential counterpart. 
 
The definition of speedup does not explicitly depend on the number of 
processors used by the algorithm.  Thus, the speedup in isolation is not a true 
measure of the efficiency of the parallel algorithm.  Good speedup usually 
comes with the additional cost of using many processors.  Thus, when 
measuring efficiency of a parallel algorithm, it is important to consider both the 
worst-case complexity W(n) and the number of processors p(n) used. 
 
Cost of a Parallel Algorithm 
 
Given the definition shown in Figure 5 for the worst-case complexity of a parallel 
algorithm using p(n) processors for solving a given problem, the cost C(n) of the 
parallel algorithm is defined as shown in Figure 6 below. 
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Figure 6 – Definition of the cost of a parallel algorithm. 
 
To judge the quality of a parallel algorithm, it is always useful to compare its 
cost to W*(n).  A parallel algorithm  is cost optimal if C(n) = W*(n).  A parallel 
algorithm is considered cost efficient if C(n) is within a polylogarithmic factor of 
being cost optimal (a polylogarithmic function belongs to O(logk n)). 
 
There is a tradeoff between using more processors to achieve better speedup 
and fewer processors to achieve cost optimality.  Indeed, a sequential algorithm 
having optimal worst-case complexity for a given problem is at the same time 
cost optimal.  Note that the cost C(n) equals the total number of basic 
operations performed by the algorithm only if each parallel basic operation 
consists of p(n) basic operations; that is, only if none of the p(n) processors 
utilized by the algorithm are idle when a parallel basic operation is performed.  
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Thus, if the p(n) processors are all active doing useful work, we can expect the 
ratio W*(n)/C(n) to be close to 1 (since the worst-case complexity of a 
sequential algorithm is measured in terms of the total number of basic 
operations).  The ratio W*(n)/C(n), which indicates how effectively the 
processors are utilized, is known as the efficiency E(n). 
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Figure 7 – Definition of the efficiency of a parallel algorithm. 
 
From the definition of the efficiency of a parallel algorithm given in Figure 7, it is 
immediately apparent that: 
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Figure 8 – Definition of the efficiency of a parallel algorithm in terms of speedup and number 

of processors. 
 
Note that E(n) ≤ 1, since otherwise a faster sequential algorithm can be 
obtained than a parallel one!  Further, a parallel algorithm is cost optimal iff E(n) 
= 1.  Finding cost-optimal algorithms that also show good speedup is usually 
difficult because of the trade-off we mentioned earlier with respect to the 
increasing the number of processors to achieve a better speedup opposed to 
reducing the number of processors to achieve cost optimality.  Good speedup 
might come at the cost of using many processors, perhaps forcing more and 
more of the processors to remain idle as the algorithm progresses toward 
completion (consider the binary fan-in technique as an example). 
 
To illustrate these performance measures for parallel algorithms let’s consider 
the minPRAM algorithm we developed in the previous set of notes (duplicated 
below as Figure 9. 
 
We saw earlier that the minPRAM algorithm has complexity W(n) = log2n.  Since 
the best sequential algorithm for finding the maximum of n elements has 
complexity W*(n) = n – 1, minPRAM exhibits a speedup of: 
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Since the minPRAM algorithm utilizes n/2 processors, it has cost and efficiency 
given by: 
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Figure 9 – minPRAM parallel algorithm from previous set of notes (Parallel Algorithms III). 

function minPRAM( L[1:n]) 
 
model: EREW PRAM with p = n/2 processors 
input:  L[1:n] (a list of size n, n = 2k) 
output: the minimum value of a list element in L 
 
    for j := 1 to log2n do 
         for 1 ≤  i  ≤  n/2j do in parallel 
   if L[2i-1] > L[2i] then 
  L[i] := L[2i] 
   else 
  L[i] := L[2i-1] 
   endif 
        end in parallel 
    endfor 
    return(L[1]) 
end minPRAM 
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However, minPRAM is not cost optimal because C(n) is greater than W*(n)! 
 
To illustrate the importance of using more than just speedup as a measure of 
performance, consider the problem of finding the minimum on a CRCW PRAM.  

Using 2nn
2
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⎛  processors and the CRCW PRAM model, we can design 

an algorithm minCRCW that finds the minimum value in a list L[1:n] of size n 
using a single parallel comparison step!  However, the cost ( ) 2nn2 /−  of 
minCRCW is even higher than the cost of minPRAM.  Using the CRCW PRAM 
model allows the processors to write concurrently to the same memory location 

only if they are writing the same value.   Let’s denote the 2nn
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processors used by minCRCW by Pi, j, i, j ∈ {1, …, n}, i < j.  In one parallel step 
a shared memory array win[1:n] is initialized to 0.  The array win  is used to 
store the results of the “win-loss” comparisons of the elements in L.  For each 
pair of numbers L[ i ] and L[ j ], i < j, Pi, j reads L[ i ] and L[ j ], compares them, 
writes a 1 to win[ i ] if L[ i ] > L[ j ], and writes a 1 to win[ j ] otherwise.  
Obviously, only one index k has the property that the corresponding array 
element L[ k ] loses each of the n-1 comparisons involving L[ k ].  Therefore, 
win[ i ] = 1, i ≠ k, and win[ k ] = 0.  The value of k is determined in one parallel 
step by assigning n processors the task of reading the array win.  The action of 
the minCRCW algorithm is shown in Figure 10. 
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  indexmin = 3, L[3] = 6 is returned 
 
Figure 10 – Action of algorithm minCRCW on sample list using six processors. 
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Figure 11 gives the parallel pseudocode algorithm for finding the minimum value 
in a list using the CRCW PRAM model.  Use this algorithm to determine the 
actions which are shown in parallel in Figure 10. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 – Parallel algorithm for finding minimum value using CRCW PRAM. 
 
The minCRCW algorithm has worst-case complexity W(n) = 1, since it only 
performs a single comparison step.  Therefore, minCRCW has speedup S(n) = 
n – 1.  However, there is clearly a drawback to this algorithm…can you tell what 
it is?  The drawback is in the large cost and low efficiency measures since: 
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Table 1 lists the various performance measures for the parallel algorithms that 
we have examined in this set of notes. 
 
 
 
 

function minCRCW( L[1:n]) 
 
model: CRCW PRAM with p = (n2 – n)/2 processors 
 
input: L[1:n] (a list of size n) 
output: the minimum value in the list L 
 
 for 1≤ i ≤ n do in parallel 
      win[i] := 0 
 end in parallel 
 for 1 ≤ i, j ≤ n .and. i < j do in parallel 
      {Pi, j reads and compares L[i] and L[ j ]} 
      if L[i] > L[ j ] then 
  win[i] := 1  {processors Pi, j concurrently write 1 to win[i]} 
      else 
  win[ j ] := 1 {processors Pi, j concurrently write 1 to win[ j ]} 
      endif 
 end in parallel 
 for 1 ≤ i ≤ n do in parallel 
      if win[i] = 0 then  
  indexmin := i 
      endif 
 end in parallel 
 return(L[indexmin]) 
end minCRCW 
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Algorithm Basic 

Operation p(n) W(n) S(n) C(n) E(n) 

minPRAM < n log2n n/log2n n log2n 1/log2n 

SearchPRAM < n log2n n/log2n n log2n 1/log2n 

min2Dmesh < n n  n  n3/2 1/ n  

search2Dmesh < n n  n  n3/2 1/ n  

minCRCW < n2 1 n n2 1/n 
Table 1 – Big-Oh performance measures for parallel algorithms. 
 
 
Speedup and Amdahl’s Law 
 
Utilizing p processors versus a single processor can yield significant speedup 
for certain problems.  Ultimate speedup occurs for problems that involve 
independent operations requiring little or no communication between 
processors.  For example, adding two n-dimensional vectors x = (x1, x2, …, xn) 
and y = (y1, y2, …, yn), p(n) = n, can be done in a single parallel step:  
simultaneously processor Pi adds xi and yi for i ∈{1, …, n}.  This represents a 
speedup of a factor of n over the n sequential steps required to do this vector 
addition on a single processor machine.  However, problems which yield 
ultimate speedup are rare.  Most problems have an inherently sequential 
component and therefore cannot be completely parallelized.  Amdahl’s law 
expresses an upper bound for the speedup achievable by any parallel algorithm 
for a given problem in terms of the inherently sequential component of the 
problem. 
 
Note that any parallel algorithm can be thought of as a parallelization of the 
associated sequential algorithm that performs the operations in each parallel 
operation sequentially.  Now suppose that we are given a sequential algorithm 
that we wish to parallelize and that a fraction f of the basic operations must be 
performed sequentially for any input (no matter what the input size).  If we have 
at most p processors, then the parallelization of the sequential algorithm has 
complexity at least f + (1- f)/p times the complexity of the sequential algorithm.  
Thus, for any input to the algorithm, the parallelized algorithm achieves a 
speedup of at most ]/)(/[ pf1f1 −+  over the sequential algorithm.  This upper 
bound on the speedup achievable for any input by parallelizing a sequential 
algorithm is known as Amdahl’s law which is: 
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Amdahl’s Law:  
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It would appear that Amdahl’s law severely limits the speedup that is 
achievable, in practice however, the fraction f is often dependent on the size of 
the input and diminishes as the input size increases.   
 
 
Summary 
 
The wide variety of parallel architectures that are available presents a 
fundamental problem of determining the portability of an algorithm written for a 
specific architecture.  In the case of PRAMs, algorithms designed for CRCW 
and CREW models with p processors can be simulated on the EREW PRAM 
with p processors at a cost of a multiplicative complexity factor of log2 p.  In the 
case of interconnection network models, the portability question is usually 
handled by establishing efficient ways in which to embed one interconnection 
model into another.  An embedding from an interconnection model A into 
another model B yields a canonical translation of any algorithm written for A to 
one suitable for B.  Embeddings between interconnection networks is a very 
active research area today. 
 
A sequential algorithm is entirely impractical unless it has polynomial complexity 
O(nk) for some positive integer k.  Sequential algorithms are sometimes called 
time efficient if they have polynomial worst-case complexity.  A parallel 
algorithm on a PRAM is considered to be time efficient if it has polylogarithmic 
O((log2 n)k) worst-case complexity.  A parallel algorithm for solving a given 
problem, which can be solved by a sequential algorithm in polynomial time 
(belongs to the class P), is said to be in the class NC (Nick’s class) if it has 
polylogarithmic complexity using a polynomially bounded number of processors.  
The class NC is an important class from a theoretical point of view, although 
with present technology, the assumption of more than a linear number of 
processors is impractical for large n, is impractical.   A fundamental unsolved 
question is whether P = NC which is equivalent to the question of whether P = 
NP. 


