
Parallel Algorithms – Part 4 - 1

Parallel Algorithm Pseudocode Conventions for Mesh Models – Continued

Read/Write Statements

We will assume the existence of two parallel I/O statements, read for input and
write for output. Suppose, for example, that we have a list of n values stored
sequentially in the input device. These n values might be read into a one-
dimensional mesh MP by the following statement:

 for Pi, 1 ≤ i ≤ n do in parallel
 read(Pi: L)
 end in parallel

This in parallel statement simultaneously reads the ith value in the external
input device into the variable Pi:L in the local memory of processor Pi, i ∈{1, …,
n}.

Typically, when using read or write statements in a procedure or function, a
dcl statement is included which covers all variables participating in I/O, together
with range descriptions when interconnection models are considered (the range
variable is not required for PRAM models due to the shared nature of the
memory). Also, the terms external input and external output will be utilized in
the opening syntax.

Algorithms for the Mesh Model

As we did for the PRAM model, we now will develop a complete algorithm for
searching on the two-dimensional mesh model.

Recall from our earlier discussions of this algorithm, that similar to the PRAM
algorithm for the same problem, the 2-d mesh algorithm for searching consisted
of three distinct phases, the first of which was broadcasting phase in which the
value of the search element x was broadcast as a distributed element to all the
participating processors. Using the pseudocode that we have developed for the
interconnection network models, this algorithm would have the pseudocode
shown in Figure 1.

Parallel Algorithms – Part 4

Parallel Algorithms – Part 4 - 2

Figure 1 – Parallel pseudocode algorithm for broadcasting in a 2D mesh.

The second phase of the algorithm begins after the search value has been
broadcast through the distributed variable. Each processor Pi, j in parallel
compares Pi,j: L to Pi,j: x and writes the value ∞ into Pi,j: index if Pi,j: L ≠ Pi,j: x.
This comparison is accomplished using the pseudocode shown in Figure 2.

Figure 2 – Pseudocode to perform the parallel search in the 2d mesh.

The third and final phase of the algorithm consists of a reverse broadcast
technique to filter the minimum processor index value into processor P1,1. The
algorithm for this final phase is shown in Figure 3.

procedure broadcast2Dmesh (P1,1:x, n)

model: Two-dimensional mesh Mq,q with p = n = q2 processors

input: P1,1:x (element to be broadcast)

output: P1,1:x (element is broadcast to each processor in Mq,q)

 for i := 1 to q-1 do
 P1, i+1:x ⇐ P1, i: x {propagate x to right across first row}
 endfor

 for i := 1 to q-1 do
 for Pi, j, 1 ≤ j ≤ q do in parallel
 Pi+1, j:x ⇐ Pi, j: x {propagate x down row by row}
 end in parallel
 endfor

end broadcast2Dmesh

for Pi, j, 1 ≤ i, j ≤ q do in parallel
 if Pi, j: L ≠ Pi,j: x then
 Pi, j: index := ∞
 endif
end in parallel

Parallel Algorithms – Part 4 - 3

Figure 3 – Pseudocode parallel algorithm for reverse broadcast technique.

Having developed the necessary pseudocode for the three basic phases of our
searching algorithm on the 2-d mesh, we can now put the pieces together and
present our complete searching algorithm which is shown in Figure 4. Recall
that we will input the search value to the front end processor as a front end
variable as opposed to a distributed variable that has an instantiation in each
processor.

function min2Dmesh (x, n)

model: Two-dimensional mesh Mq,q with p = n = q2 processors

input: x (a list of n numbers) range: Pi, j, 1 ≤ i, j ≤ q

output: min {x1, x2, …, xn}

 for row := q-1 downto 1 do {compute column minimums}
 for Pi, j, i = row .and. 1 ≤ j ≤ q do in parallel
 {compute (i+1)st row and ith row minimums in parallel}
 Pi, j: temp ⇐ Pi+1, j: x {communicate up from x to temp}
 x := min{x, temp} {compute min of Pi, j: x and Pi, j: temp}
 end in parallel
 endfor

 {compute first row minimum sequentially}
 for column := q-1 downto 1 do
 for Pi, j, i = 1 .and. j = column do in parallel
 Pi, j: temp ⇐ Pi, j+1: x {communicate left from x to temp}
 x := min{x, temp} {only P1, j is active}
 end in parallel
 endfor
 return(P1,1: x)

end min2Dmesh

Parallel Algorithms – Part 4 - 4

Figure 4 – Complete searching algorithm in parallel pseudocode for 2d mesh.

Performance Measures for Parallel Algorithms

SIMD computers have the property that all the active processors (remember
that some may be idle on a given parallel step) perform the same operation (on
possibly different data) during any parallel step. The set of these common
operations performed during a parallel step is known as a parallel basic
operation. The best-case, average, and worst-case complexities of a parallel
algorithm are defined in terms of the number of parallel basic operations
performed. For example, the worst-case complexity W(n) of a parallel algorithm
using p(n) processors is defined to be the maximum number of parallel basic
operations performed by the algorithm over all inputs of size n. The best-case
complexity B(n) and average complexity λ(n) are defined in a similar manner.

For parallel algorithms, the number of parallel basic operations performed
usually depends only on the size of the input n, so that the best-case and
average complexities are the same as the worst-case complexity.

One measure of the performance of a parallel algorithm results from comparing
W(n) to the smallest worst-case complexity W*(n) over all sequential algorithms

function search2Dmesh(L, n, x, index)

model: two dimensional mesh Mq,q with p = n= q2 processors

input: L (a list of elements) range: Pi, j, 1 ≤ i, j ≤ q
 x (a search element) range: front end variable
 index (Pi, j: index = (q-1)i + j) range: Pi, j, 1 ≤ i, j ≤ q

output: the smallest row-major index where x occurs in L, or ∞ if x is ∉ L

 P1,1: x = x
 call broadcast2Dmesh(P1, 1: x, n)
 for 1 ≤ i, j ≤ q do in parallel
 if Pi, j: L ≠ Pi, j: x then
 Pi, j: index := ∞
 endif
 end in parallel
 return(min2Dmesh(index, n))

end search2Dmesh

Parallel Algorithms – Part 4 - 5

for the problem. This leads to the formal definition of the speedup S(n) of the
parallel algorithm shown in Figure 5.

Speedup of a Parallel Algorithm

Let W(n) denote the worst-case complexity of a parallel algorithm for solving a
given problem, and let W*(n) denote the smallest worst-case complexity over all
known sequential algorithms for solving the same problem. Then the speedup
S(n) of the parallel algorithm is defined by:

)(
)(*)(

nW
nWnS =

Figure 5 – Definition of the speedup of a parallel algorithm in terms of sequential counterpart.

The definition of speedup does not explicitly depend on the number of
processors used by the algorithm. Thus, the speedup in isolation is not a true
measure of the efficiency of the parallel algorithm. Good speedup usually
comes with the additional cost of using many processors. Thus, when
measuring efficiency of a parallel algorithm, it is important to consider both the
worst-case complexity W(n) and the number of processors p(n) used.

Cost of a Parallel Algorithm

Given the definition shown in Figure 5 for the worst-case complexity of a parallel
algorithm using p(n) processors for solving a given problem, the cost C(n) of the
parallel algorithm is defined as shown in Figure 6 below.

)()()(nWnpnC ×=

Figure 6 – Definition of the cost of a parallel algorithm.

To judge the quality of a parallel algorithm, it is always useful to compare its
cost to W*(n). A parallel algorithm is cost optimal if C(n) = W*(n). A parallel
algorithm is considered cost efficient if C(n) is within a polylogarithmic factor of
being cost optimal (a polylogarithmic function belongs to O(logk n)).

There is a tradeoff between using more processors to achieve better speedup
and fewer processors to achieve cost optimality. Indeed, a sequential algorithm
having optimal worst-case complexity for a given problem is at the same time
cost optimal. Note that the cost C(n) equals the total number of basic
operations performed by the algorithm only if each parallel basic operation
consists of p(n) basic operations; that is, only if none of the p(n) processors
utilized by the algorithm are idle when a parallel basic operation is performed.

Parallel Algorithms – Part 4 - 6

Thus, if the p(n) processors are all active doing useful work, we can expect the
ratio W*(n)/C(n) to be close to 1 (since the worst-case complexity of a
sequential algorithm is measured in terms of the total number of basic
operations). The ratio W*(n)/C(n), which indicates how effectively the
processors are utilized, is known as the efficiency E(n).

)(
)(*)(

nC
nWnE =

Figure 7 – Definition of the efficiency of a parallel algorithm.

From the definition of the efficiency of a parallel algorithm given in Figure 7, it is
immediately apparent that:

)(
)(

)()(
)()()(

np
nS

nWnp
nWnSnE ==

Figure 8 – Definition of the efficiency of a parallel algorithm in terms of speedup and number

of processors.

Note that E(n) ≤ 1, since otherwise a faster sequential algorithm can be
obtained than a parallel one! Further, a parallel algorithm is cost optimal iff E(n)
= 1. Finding cost-optimal algorithms that also show good speedup is usually
difficult because of the trade-off we mentioned earlier with respect to the
increasing the number of processors to achieve a better speedup opposed to
reducing the number of processors to achieve cost optimality. Good speedup
might come at the cost of using many processors, perhaps forcing more and
more of the processors to remain idle as the algorithm progresses toward
completion (consider the binary fan-in technique as an example).

To illustrate these performance measures for parallel algorithms let’s consider
the minPRAM algorithm we developed in the previous set of notes (duplicated
below as Figure 9.

We saw earlier that the minPRAM algorithm has complexity W(n) = log2n. Since
the best sequential algorithm for finding the maximum of n elements has
complexity W*(n) = n – 1, minPRAM exhibits a speedup of:

n
1nnS

2log
)(−
=

Since the minPRAM algorithm utilizes n/2 processors, it has cost and efficiency
given by:

Parallel Algorithms – Part 4 - 7

Figure 9 – minPRAM parallel algorithm from previous set of notes (Parallel Algorithms III).

function minPRAM(L[1:n])

model: EREW PRAM with p = n/2 processors
input: L[1:n] (a list of size n, n = 2k)
output: the minimum value of a list element in L

 for j := 1 to log2n do
 for 1 ≤ i ≤ n/2j do in parallel
 if L[2i-1] > L[2i] then
 L[i] := L[2i]
 else
 L[i] := L[2i-1]
 endif
 end in parallel
 endfor
 return(L[1])
end minPRAM

Parallel Algorithms – Part 4 - 8

P12 P23 P34

P13
P24

P14

nn

1n2nEandn
2
n

nC
2

2 log
)()(log)(−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

However, minPRAM is not cost optimal because C(n) is greater than W*(n)!

To illustrate the importance of using more than just speedup as a measure of
performance, consider the problem of finding the minimum on a CRCW PRAM.

Using 2nn
2
n 2 /)(−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ processors and the CRCW PRAM model, we can design

an algorithm minCRCW that finds the minimum value in a list L[1:n] of size n
using a single parallel comparison step! However, the cost () 2nn2 /− of
minCRCW is even higher than the cost of minPRAM. Using the CRCW PRAM
model allows the processors to write concurrently to the same memory location

only if they are writing the same value. Let’s denote the 2nn
2
n 2 /)(−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

processors used by minCRCW by Pi, j, i, j ∈ {1, …, n}, i < j. In one parallel step
a shared memory array win[1:n] is initialized to 0. The array win is used to
store the results of the “win-loss” comparisons of the elements in L. For each
pair of numbers L[i] and L[j], i < j, Pi, j reads L[i] and L[j], compares them,
writes a 1 to win[i] if L[i] > L[j], and writes a 1 to win[j] otherwise.
Obviously, only one index k has the property that the corresponding array
element L[k] loses each of the n-1 comparisons involving L[k]. Therefore,
win[i] = 1, i ≠ k, and win[k] = 0. The value of k is determined in one parallel
step by assigning n processors the task of reading the array win. The action of
the minCRCW algorithm is shown in Figure 10.

 1 1 1 1 1 1

 indexmin = 3, L[3] = 6 is returned

Figure 10 – Action of algorithm minCRCW on sample list using six processors.

95 10 6 15 L

Concurrent
Read

Concurrent
Write

win 1 1 0 1

Parallel Algorithms – Part 4 - 9

Figure 11 gives the parallel pseudocode algorithm for finding the minimum value
in a list using the CRCW PRAM model. Use this algorithm to determine the
actions which are shown in parallel in Figure 10.

Figure 11 – Parallel algorithm for finding minimum value using CRCW PRAM.

The minCRCW algorithm has worst-case complexity W(n) = 1, since it only
performs a single comparison step. Therefore, minCRCW has speedup S(n) =
n – 1. However, there is clearly a drawback to this algorithm…can you tell what
it is? The drawback is in the large cost and low efficiency measures since:

n
2nEand

2
nnnC

2
=

−
=)()(

Table 1 lists the various performance measures for the parallel algorithms that
we have examined in this set of notes.

function minCRCW(L[1:n])

model: CRCW PRAM with p = (n2 – n)/2 processors

input: L[1:n] (a list of size n)
output: the minimum value in the list L

 for 1≤ i ≤ n do in parallel
 win[i] := 0
 end in parallel
 for 1 ≤ i, j ≤ n .and. i < j do in parallel
 {Pi, j reads and compares L[i] and L[j]}
 if L[i] > L[j] then
 win[i] := 1 {processors Pi, j concurrently write 1 to win[i]}
 else
 win[j] := 1 {processors Pi, j concurrently write 1 to win[j]}
 endif
 end in parallel
 for 1 ≤ i ≤ n do in parallel
 if win[i] = 0 then
 indexmin := i
 endif
 end in parallel
 return(L[indexmin])
end minCRCW

Parallel Algorithms – Part 4 - 10

Algorithm Basic

Operation p(n) W(n) S(n) C(n) E(n)

minPRAM < n log2n n/log2n n log2n 1/log2n

SearchPRAM < n log2n n/log2n n log2n 1/log2n

min2Dmesh < n n n n3/2 1/ n

search2Dmesh < n n n n3/2 1/ n

minCRCW < n2 1 n n2 1/n
Table 1 – Big-Oh performance measures for parallel algorithms.

Speedup and Amdahl’s Law

Utilizing p processors versus a single processor can yield significant speedup
for certain problems. Ultimate speedup occurs for problems that involve
independent operations requiring little or no communication between
processors. For example, adding two n-dimensional vectors x = (x1, x2, …, xn)
and y = (y1, y2, …, yn), p(n) = n, can be done in a single parallel step:
simultaneously processor Pi adds xi and yi for i ∈{1, …, n}. This represents a
speedup of a factor of n over the n sequential steps required to do this vector
addition on a single processor machine. However, problems which yield
ultimate speedup are rare. Most problems have an inherently sequential
component and therefore cannot be completely parallelized. Amdahl’s law
expresses an upper bound for the speedup achievable by any parallel algorithm
for a given problem in terms of the inherently sequential component of the
problem.

Note that any parallel algorithm can be thought of as a parallelization of the
associated sequential algorithm that performs the operations in each parallel
operation sequentially. Now suppose that we are given a sequential algorithm
that we wish to parallelize and that a fraction f of the basic operations must be
performed sequentially for any input (no matter what the input size). If we have
at most p processors, then the parallelization of the sequential algorithm has
complexity at least f + (1- f)/p times the complexity of the sequential algorithm.
Thus, for any input to the algorithm, the parallelized algorithm achieves a
speedup of at most]/)(/[pf1f1 −+ over the sequential algorithm. This upper
bound on the speedup achievable for any input by parallelizing a sequential
algorithm is known as Amdahl’s law which is:

Parallel Algorithms – Part 4 - 11

Amdahl’s Law:
pf1f

1S
/)(−+

≤

It would appear that Amdahl’s law severely limits the speedup that is
achievable, in practice however, the fraction f is often dependent on the size of
the input and diminishes as the input size increases.

Summary

The wide variety of parallel architectures that are available presents a
fundamental problem of determining the portability of an algorithm written for a
specific architecture. In the case of PRAMs, algorithms designed for CRCW
and CREW models with p processors can be simulated on the EREW PRAM
with p processors at a cost of a multiplicative complexity factor of log2 p. In the
case of interconnection network models, the portability question is usually
handled by establishing efficient ways in which to embed one interconnection
model into another. An embedding from an interconnection model A into
another model B yields a canonical translation of any algorithm written for A to
one suitable for B. Embeddings between interconnection networks is a very
active research area today.

A sequential algorithm is entirely impractical unless it has polynomial complexity
O(nk) for some positive integer k. Sequential algorithms are sometimes called
time efficient if they have polynomial worst-case complexity. A parallel
algorithm on a PRAM is considered to be time efficient if it has polylogarithmic
O((log2 n)k) worst-case complexity. A parallel algorithm for solving a given
problem, which can be solved by a sequential algorithm in polynomial time
(belongs to the class P), is said to be in the class NC (Nick’s class) if it has
polylogarithmic complexity using a polynomially bounded number of processors.
The class NC is an important class from a theoretical point of view, although
with present technology, the assumption of more than a linear number of
processors is impractical for large n, is impractical. A fundamental unsolved
question is whether P = NC which is equivalent to the question of whether P =
NP.

