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Parallel Algorithm Pseudocode Conventions for the PRAM Model 
 
While there is no standard for parallel algorithm design, there are several 
conventions that are widely adopted for describing parallel algorithms.    Since 
the PRAM model exhibits a shared memory, the pseudocode for PRAMs is an 
extension of the pseudocode which is utilized for sequential algorithms.  The 
major new elements are the in parallel statement, the parallelcall statement, 
and the various opening syntax specifications.  To avoid side effects, we will 
assume that all input parameters (that are not also output parameters) are 
passed by value.  All parameters of a parallel function are assumed to be input 
parameters. 
 
Opening Syntax Specification – PRAM 
 
The opening syntax for a procedure written for a PRAM machine has the 
following form: 
 
 
 
 
 
 
 
 
 
 
The opening syntax for a function written for a PRAM machine has the following 
form: 
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procedure <name> (<list of parameters>) 
 

model:  <model name> with p = (function of n> processors) 
 

input: <description of input variables> 
 

output: <description of output variables> 
 

dcl:  <declaration of local variables and global variables> 

function <name> (<list of parameters>) 
 

model:  <model name> with p = (function of n> processors) 
 

input: <description of input variables> 
 

output: <description of returned value> 
 

dcl:  <declaration of local variables and global variables> 
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The in parallel Statement 
 
In addition to the usual instructions for serial machines, parallel models have an 
in parallel statement, which allows operations to be performed on more than 
one component of the array simultaneously.  The general form of the in parallel 
statement is: 
 
 for <Boolean expression involving array indices> do in parallel 
  <statement 1> 
  <statement 2> 
   . 
   . 
   . 
  <statement k> 
 end in parallel 
 
The for clause is a Boolean expression involving array indices.  Only those 
array elements whose indices satisfy the Boolean expression participate in the 
instructions contained in the body of the in parallel statement.  These 
instructions can be any statements from sequential algorithms that apply to 
arrays.  Care must be taken however, to ensure that we remain within the 
confines of SIMD architecture (one of our assumptions).  Each of the 
statements within the in parallel statement are executed simultaneously by a 
set of active processors.  Within the pseudocode, there is no specification for 
how or which of the processors is active, we simply assume that there are 
enough processors available to handle the task.  However, when we draw the 
pictures to illustrate the action of the algorithm it is still common to match up 
processors with operations on array components. 
 
Since we have assumed that each processor is as powerful as we need it to be, 
the built-in functions odd, even, interchange sin, read, write and so forth are 
assumed to be executable by each processor in parallel.  An example of the in 
parallel statement is shown below: 
 
  for  1 ≤ i  ≤ n do in parallel 
   read (A[ i ], B[ i ]) 
   A[ i ] := A[ i ] +  sin B[ i ] 
   if A[ i ] > B[ i ] then 
    call  interchange (A[ i ], B[ i ]) 
   endif 
   write( A[ i ]) 
  end in parallel 
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The parallelcall Statement 
 
While it is possible to call a function or procedure from within an in parallel 
statement, it is sometimes more convenient, particularly when using recursion, 
to use a more compact syntax, hence the parallelcall statement.  The general 
form of the parallelcall statement is: 
 
 parallelcall <name> (<parameter 1> | <parameter 2> |…| <parameter q>) 
 
where the | symbol separates the parameters corresponding to each 
simultaneous call to the named procedure. 
 
 
SIMD versus MIMD Considerations for the PRAM Model 
 
Since we have assumed an SIMD approach for our PRAM model, we must take 
care in our algorithms not to allow two processors to perform different 
instructions simultaneously.  Thus, if then else statements and case 
statements usually need to be altered to maintain the SIMD model.  To illustrate 
this, consider Figure 1 which illustrates an example involving an if then else 
statement for a MIMD PRAM and Figure 2 which illustrates an altered form for a 
SIMD PRAM. 
 
 
 
 
 
 
 
 
Figure 1 – Example algorithm for MIMD PRAM model. 
 
 
 
 
 
 
 
 
Figure 2 – Example algorithm for SIMD PRAM model. 
 
In the MIMD algorithm of Figure 1, ten processors would be assigned the task of 
executing the instruction A[i] = 2*A[i], and a different set of n-10 processors 
would execute the instruction A[i] = A[i] + 1, all executions being simultaneous.  
However, this would not be allowed in the SIMD PRAM, since two different 

for 1 ≤ i ≤ n do in parallel 
     if i ≤ 10 then 
 A[ i ] := 2 * A[ i ] 
     else 
 A[ i ] := A[ i ] + 1 
endif 
end in parallel 

for 1 ≤ i ≤ n do in parallel 
    A[ i ] := 2 * A[ i ] 
end in parallel 
for 11≤ i ≤ n do in parallel 
    A[ i ] := A[ i ] + 1 
end in parallel
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instructions would be performed simultaneously.  This necessitates the altered 
version of the algorithm illustrated in Figure 2, which utilizes two in parallel 
statements.  An equivalent case arises for case statements executed in parallel.  
In the SIMD model these statements would be translated into a sequence of in 
parallel statements, one for each case clause. 
 
Algorithms for the EREW PRAM Model 
 
Using the syntax we have developed for the PRAM model, we’ll develop 
algorithms in this section of the notes for the searching problem that we 
discussed previously. 
 
Searching on a EREW PRAM Model 
 
Recall that searching a list of values for the occurrence of a specific value 
involved assigning the value of the search element to each entry in a temporary 
array, temp[1:n].  At first glance, it might seem that the following code segment 
would accomplish this task: 
 
  for 1 ≤ i ≤ n do in parallel 
      temp[i] := x 
  end in parallel 
 
However, this statement is not admissible on an EREW PRAM (unless n = 1), 
since it calls for the single memory location x to be read concurrently by n 
processors.  In order to fit the EREW PRAM model, we need to use the 
broadcasting method which is implemented in the algorithm in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – EREW PRAM broadcast algorithm. 

procedure broadcastPRAM (A[1:n], x) 
 
input:  A[1:n]  (an array of size n, where n = 2k) 
   x (a value to be broadcast throughout A[1:n]) 
  
output:  A[1:n] (array where A[i] = x, i = 1, …, n) 
 
     A[1] := x 
     for i := 1  to k do 
 for 2i-1 + 1 ≤ j ≤ 2i do in parallel 
      A[ j ] := A[ j – 2i-1] 
 end in parallel 
     endfor 
end  broadcastPRAM 
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Recall from our early examination of this parallel algorithm that once the value 
of x has been broadcast throughout temp[1:n], each processor Pi in parallel 
compares L[i] to temp[i] = x and writes i back to temp[i] if L[i] = x, otherwise it 
writes the value ∞ in temp[i].  The comparison step is accomplished by the code 
segment shown in Figure 4. 
 
 
 
 
 
 
 
 
 
Figure 4 – The comparison step for parallel searching. 
 
The parallel searching algorithm was not completed until the result of the search 
was returned to the calling function.  This was accomplished through the binary 
fan-in technique to move the minimum value in the list into the first position in 
the array.  The parallel code to accomplish this is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 – Parallel algorithm for binary fan-in technique. 
 

for 1 ≤ i ≤ n do in parallel 
   if L[ i ] = temp[ i ] then 
 temp[ i ] := i 
   else 
 temp[ i ] := ∞ 
   endif 
end in parallel 

function minPRAM( L[1:n]) 
 
model: EREW PRAM with p = n/2 processors 
 
input:  L[1:n] (a list of size n, n = 2k) 
   
output: the minimum value of a list element in L 
 
    for j := 1 to log2n do 
         for 1 ≤  i  ≤  n/2j do in parallel 
   if L[2i-1] > L[2i] then 
  L[i] := L[2i] 
   else 
  L[i] := L[2i-1] 
   endif 
        end in parallel 
    endfor 
    return(L[1]) 
 
end minPRAM 
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Now with all the pieces in place, we can assemble our final algorithm for 
searching in an EREW PRAM, which is shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 – EREW PRAM searching algorithm (complete). 
 
 
 
Parallel Algorithm Pseudocode Conventions for Mesh Models 
 
In general, the pseudocode algorithms designed for interconnection network 
models (our focus is on the mesh models) are more complex than that for 
PRAMs.  This is mostly due to the fact that we must now include statements 
which describe the communication between processors, specify how the 
processors handle I/O, and distinguish between central control variables 
(commonly called front-end variables) and distributed variables. 
 
Opening Syntax 
 
Each procedure for an interconnection network model begins with opening 
syntax similar to that for the PRAM model.  Parameters in the parameter list of a 
procedure or function on an interconnection network model will now include 
distributed variables.  Therefore, for each distributed variable parameter is 
important to describe the set of processors that contain meaningful information 
on input for that parameter.  Thus, the input statement not only describes the 
high-level nature of the parameter, but also includes a range clause specifying 
the range of indices of processors containing meaningful input data for the 
parameter.  Those parameters for which no range is given in the input 

procedure searchPRAM( L[1:n], x) 
 
input:  L[1:n] (a list of size n, n = 2k) 
  x (a search element) 
 
output: the smallest index where x occurs in L, or ∞ if x is ∉ L 
 
     call broadcast( temp[1:n], x) 
     for 1 ≤  i  ≤  n do in parallel 
 if L[i] = temp[i] then 
     temp[i[ := i 
 else 
     temp[i] = ∞ 
 endif 
     end in parallel 
     return (minPRAM(temp[1:n]) 
 
end searchPRAM 
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statement are central control variables (also called front-end variables) which 
are resident in the local memory of the front-end processor (central control).  
The front-end variable parameters are usually used to specify ranges of indices 
in the input and output statements.  The output statement contains similar 
specifications for all output parameters.  As with the PRAM model, the 
declaration of local variables (if needed) is done via the dcl statement.  Those 
local variables that are distributed also have a range specification.  The general 
format of the opening syntax is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The in parallel Statement 
 
The in parallel statement is similar to that for the PRAM, except that the for 
clause contains a Boolean expression involving processor indices instead of 
array indices.  The processor index might be a single index as in the one 
dimensional mesh, a pair of indices as in the two-dimensional mesh, and a bit 
string in the case of the hypercube, and so forth.  It is implicit in the pseudocode 
that we are developing that each processor involved in an in parallel statement 
recognizes its own index (pid). [In practice, this is commonly accomplished 
using a distributed variable id in the read-only local memory of each processor.  
Then for each processor P, P:id would contain the index of processor P.]  Each 
processor whose index does not satisfy the Boolean expression in the for 
clause is idle (masked out).  The active processors simultaneously execute the 

procedure <name> (<list of parameters>) 
 
model: <model name> with p = <function of n> processors 
 
input:  <description of input parameter 1> range: <processor range 1> 
   • 

• 
• 

   <description of input parameter i> range: <processor range i> 
 
output: <description of output parameter 1> range: <processor range 1> 
   • 

• 
• 

    <description of output parameter j> range: <processor range j> 
 
dcl:  <local variable1> range: <processor range 1> 

• 
• 
• 

         <local variable k> range: <processor range k> 
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instructions in the body of the in parallel statement, while the remaining 
processors are idle.  The general form of the syntax for the in parallel 
statement is: 
 
   for <processor P>, <Boolean expression involving index of P> do in parallel 
    <statement 1> 
  <statement 2> 
   • 

• 
• 

  <statement k> 
end in parallel 

 
Note that the in parallel statement is counted as representing k parallel steps.  
We’ll see the full meaning of this statement later, but keep it in mind now 
because it represents a fundamental difference between PRAM and mesh 
model parallel processing. 
 
For interconnection networks, we’ll consider two main types of functions: those 
that are simply parallel invocations of sequential functions and those that 
require communication between processors.  The first type of function works 
within each processor’s local memory and does not require communication 
between processors.  For example, consider a parallel invocation of the built-in 
function sin on a one-dimensional mesh Mp.  Then, the statement 
 
 for Pi , 1 ≤  i  ≤  n do in parallel 
  B := sin(A) 
 end in parallel 
 
where A and B are distributed variables, assigns sin(Pi: A) to  Pi: B, i = 1, …, n. 
 
The second type of function, which requires communication between 
processors, is restricted to functions that return a scalar.  When such a function 
terminates, it is assumed that the value to be returned by the function resides in 
a particular processor’s local instantiation of a suitable distributed variable.  For 
example, suppose the scalar value to be returned by a function implemented on 
a two-dimensional mesh resides in P1,1: x.  Then the return statement is given 
by: return(P1,1: x).  The return statement is used only for convenience and 
should not be interpreted as returning a value to the front-end processor that is 
directly accessible to all the processors.  The returned value is resident in a 
suitable output register of P1,1 only.  If other processors require this returned 
value, then it must be broadcast. 
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Interprocessor Communication Statement 
 
In the interconnection network model, recall that we used the syntax: 

 
 Pj: y ⇐ Pi: x 

 
for communicating processor Pi’s local variable x to an adjacent processor Pj’s 
local variable y. This communication process can be viewed as consisting of the 
following steps:  Processor Pi fetches the value of x from its local memory and 
stores it in an output register.  Then the contents of this output register is 
communicated to an input register of the adjacent processor Pj.  Finally, Pj 
writes the value in this input register to the local variable y.  We will assume that 
these steps constitute a single communication step which requires unit time. 
 
The general form of the interprocessor communication statement is: 
 
 <target processor: target variable> ⇐ <source processor: source variable> 
 
The interprocessor communication statement is typically embedded in the body 
of an in parallel statement, in which case the for clause includes a Boolean 
expression involving source processor indices that determine the set of active 
source processors.  Any active source and corresponding target processor must 
be adjacent in the interconnection network.  A sample parallel interprocessor 
communication statement is shown in Figure 7. 
 
   for Pi, 2 ≤ i ≤ 2k .and. even(i) do in parallel 
     Pi-1: B ⇐ Pi: A {communicate left from A to B} 
   end in parallel 
 
 
 
 
    
 

before execution 
 
 
 
 
 
 
   after execution 
 
Figure 7 – Action of a parallel communication step on a 1-d mesh. 
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Communication is only one direction in a single parallel step, in order to 
maintain a strict SIMD model.  For example, in a one-dimensional mesh,  some 
of the active processors cannot be communicating to the left while other active 
processors are communicating to the right in the same parallel communication 
step.  If the communication involves the same distributed variable, the term 
propagate rather than communicate is used.   Figure 8 illustrates a parallel 
communication step where processors are both source and target. 
 
 
   for Pi, 1 ≤ i ≤ n-1 do in parallel 
     Pi+1: A ⇐ Pi: A {propagate A to the right} 
   end in parallel 
 
 
 
 
    
 

before execution 
 
 
 
 
 
 
   after execution 
 
Figure 8 – Action of a parallel communication step on a 1-d mesh with processors being both 

source and target. 
 
Figure 8 presents a reasonable view of interprocessor communication in light of 
the systolic nature of a communication step.  At the beginning of a 
communication step, all active source processors initiate the process of sending 
(pulsing) data from their local memory to the relevant adjacent processor.  At 
the end (after unit time has elapsed) of the communication step, this data has 
been received and assigned by the target processor.  Thus, it is both a natural 
and common feature of many parallel algorithms to have the same processor 
send information at the beginning of the communication step and receive 
information at the end of the step.  However, it is not permitted for any 
processor to be the target or source of more than one processor during a single 
communication step. 
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