
Parallel Algorithms – Part 3 - 1

Parallel Algorithm Pseudocode Conventions for the PRAM Model

While there is no standard for parallel algorithm design, there are several
conventions that are widely adopted for describing parallel algorithms. Since
the PRAM model exhibits a shared memory, the pseudocode for PRAMs is an
extension of the pseudocode which is utilized for sequential algorithms. The
major new elements are the in parallel statement, the parallelcall statement,
and the various opening syntax specifications. To avoid side effects, we will
assume that all input parameters (that are not also output parameters) are
passed by value. All parameters of a parallel function are assumed to be input
parameters.

Opening Syntax Specification – PRAM

The opening syntax for a procedure written for a PRAM machine has the
following form:

The opening syntax for a function written for a PRAM machine has the following
form:

Parallel Algorithms – Part 3

procedure <name> (<list of parameters>)

model: <model name> with p = (function of n> processors)

input: <description of input variables>

output: <description of output variables>

dcl: <declaration of local variables and global variables>

function <name> (<list of parameters>)

model: <model name> with p = (function of n> processors)

input: <description of input variables>

output: <description of returned value>

dcl: <declaration of local variables and global variables>

Parallel Algorithms – Part 3 - 2

The in parallel Statement

In addition to the usual instructions for serial machines, parallel models have an
in parallel statement, which allows operations to be performed on more than
one component of the array simultaneously. The general form of the in parallel
statement is:

 for <Boolean expression involving array indices> do in parallel
 <statement 1>
 <statement 2>
 .
 .
 .
 <statement k>
 end in parallel

The for clause is a Boolean expression involving array indices. Only those
array elements whose indices satisfy the Boolean expression participate in the
instructions contained in the body of the in parallel statement. These
instructions can be any statements from sequential algorithms that apply to
arrays. Care must be taken however, to ensure that we remain within the
confines of SIMD architecture (one of our assumptions). Each of the
statements within the in parallel statement are executed simultaneously by a
set of active processors. Within the pseudocode, there is no specification for
how or which of the processors is active, we simply assume that there are
enough processors available to handle the task. However, when we draw the
pictures to illustrate the action of the algorithm it is still common to match up
processors with operations on array components.

Since we have assumed that each processor is as powerful as we need it to be,
the built-in functions odd, even, interchange sin, read, write and so forth are
assumed to be executable by each processor in parallel. An example of the in
parallel statement is shown below:

 for 1 ≤ i ≤ n do in parallel
 read (A[i], B[i])
 A[i] := A[i] + sin B[i]
 if A[i] > B[i] then
 call interchange (A[i], B[i])
 endif
 write(A[i])
 end in parallel

Parallel Algorithms – Part 3 - 3

The parallelcall Statement

While it is possible to call a function or procedure from within an in parallel
statement, it is sometimes more convenient, particularly when using recursion,
to use a more compact syntax, hence the parallelcall statement. The general
form of the parallelcall statement is:

 parallelcall <name> (<parameter 1> | <parameter 2> |…| <parameter q>)

where the | symbol separates the parameters corresponding to each
simultaneous call to the named procedure.

SIMD versus MIMD Considerations for the PRAM Model

Since we have assumed an SIMD approach for our PRAM model, we must take
care in our algorithms not to allow two processors to perform different
instructions simultaneously. Thus, if then else statements and case
statements usually need to be altered to maintain the SIMD model. To illustrate
this, consider Figure 1 which illustrates an example involving an if then else
statement for a MIMD PRAM and Figure 2 which illustrates an altered form for a
SIMD PRAM.

Figure 1 – Example algorithm for MIMD PRAM model.

Figure 2 – Example algorithm for SIMD PRAM model.

In the MIMD algorithm of Figure 1, ten processors would be assigned the task of
executing the instruction A[i] = 2*A[i], and a different set of n-10 processors
would execute the instruction A[i] = A[i] + 1, all executions being simultaneous.
However, this would not be allowed in the SIMD PRAM, since two different

for 1 ≤ i ≤ n do in parallel
 if i ≤ 10 then
 A[i] := 2 * A[i]
 else
 A[i] := A[i] + 1
endif
end in parallel

for 1 ≤ i ≤ n do in parallel
 A[i] := 2 * A[i]
end in parallel
for 11≤ i ≤ n do in parallel
 A[i] := A[i] + 1
end in parallel

Parallel Algorithms – Part 3 - 4

instructions would be performed simultaneously. This necessitates the altered
version of the algorithm illustrated in Figure 2, which utilizes two in parallel
statements. An equivalent case arises for case statements executed in parallel.
In the SIMD model these statements would be translated into a sequence of in
parallel statements, one for each case clause.

Algorithms for the EREW PRAM Model

Using the syntax we have developed for the PRAM model, we’ll develop
algorithms in this section of the notes for the searching problem that we
discussed previously.

Searching on a EREW PRAM Model

Recall that searching a list of values for the occurrence of a specific value
involved assigning the value of the search element to each entry in a temporary
array, temp[1:n]. At first glance, it might seem that the following code segment
would accomplish this task:

 for 1 ≤ i ≤ n do in parallel
 temp[i] := x
 end in parallel

However, this statement is not admissible on an EREW PRAM (unless n = 1),
since it calls for the single memory location x to be read concurrently by n
processors. In order to fit the EREW PRAM model, we need to use the
broadcasting method which is implemented in the algorithm in Figure 3.

Figure 3 – EREW PRAM broadcast algorithm.

procedure broadcastPRAM (A[1:n], x)

input: A[1:n] (an array of size n, where n = 2k)
 x (a value to be broadcast throughout A[1:n])

output: A[1:n] (array where A[i] = x, i = 1, …, n)

 A[1] := x
 for i := 1 to k do
 for 2i-1 + 1 ≤ j ≤ 2i do in parallel
 A[j] := A[j – 2i-1]
 end in parallel
 endfor
end broadcastPRAM

Parallel Algorithms – Part 3 - 5

Recall from our early examination of this parallel algorithm that once the value
of x has been broadcast throughout temp[1:n], each processor Pi in parallel
compares L[i] to temp[i] = x and writes i back to temp[i] if L[i] = x, otherwise it
writes the value ∞ in temp[i]. The comparison step is accomplished by the code
segment shown in Figure 4.

Figure 4 – The comparison step for parallel searching.

The parallel searching algorithm was not completed until the result of the search
was returned to the calling function. This was accomplished through the binary
fan-in technique to move the minimum value in the list into the first position in
the array. The parallel code to accomplish this is shown in Figure 5.

Figure 5 – Parallel algorithm for binary fan-in technique.

for 1 ≤ i ≤ n do in parallel
 if L[i] = temp[i] then
 temp[i] := i
 else
 temp[i] := ∞
 endif
end in parallel

function minPRAM(L[1:n])

model: EREW PRAM with p = n/2 processors

input: L[1:n] (a list of size n, n = 2k)

output: the minimum value of a list element in L

 for j := 1 to log2n do
 for 1 ≤ i ≤ n/2j do in parallel
 if L[2i-1] > L[2i] then
 L[i] := L[2i]
 else
 L[i] := L[2i-1]
 endif
 end in parallel
 endfor
 return(L[1])

end minPRAM

Parallel Algorithms – Part 3 - 6

Now with all the pieces in place, we can assemble our final algorithm for
searching in an EREW PRAM, which is shown in Figure 6.

Figure 6 – EREW PRAM searching algorithm (complete).

Parallel Algorithm Pseudocode Conventions for Mesh Models

In general, the pseudocode algorithms designed for interconnection network
models (our focus is on the mesh models) are more complex than that for
PRAMs. This is mostly due to the fact that we must now include statements
which describe the communication between processors, specify how the
processors handle I/O, and distinguish between central control variables
(commonly called front-end variables) and distributed variables.

Opening Syntax

Each procedure for an interconnection network model begins with opening
syntax similar to that for the PRAM model. Parameters in the parameter list of a
procedure or function on an interconnection network model will now include
distributed variables. Therefore, for each distributed variable parameter is
important to describe the set of processors that contain meaningful information
on input for that parameter. Thus, the input statement not only describes the
high-level nature of the parameter, but also includes a range clause specifying
the range of indices of processors containing meaningful input data for the
parameter. Those parameters for which no range is given in the input

procedure searchPRAM(L[1:n], x)

input: L[1:n] (a list of size n, n = 2k)
 x (a search element)

output: the smallest index where x occurs in L, or ∞ if x is ∉ L

 call broadcast(temp[1:n], x)
 for 1 ≤ i ≤ n do in parallel
 if L[i] = temp[i] then
 temp[i[:= i
 else
 temp[i] = ∞
 endif
 end in parallel
 return (minPRAM(temp[1:n])

end searchPRAM

Parallel Algorithms – Part 3 - 7

statement are central control variables (also called front-end variables) which
are resident in the local memory of the front-end processor (central control).
The front-end variable parameters are usually used to specify ranges of indices
in the input and output statements. The output statement contains similar
specifications for all output parameters. As with the PRAM model, the
declaration of local variables (if needed) is done via the dcl statement. Those
local variables that are distributed also have a range specification. The general
format of the opening syntax is shown below:

The in parallel Statement

The in parallel statement is similar to that for the PRAM, except that the for
clause contains a Boolean expression involving processor indices instead of
array indices. The processor index might be a single index as in the one
dimensional mesh, a pair of indices as in the two-dimensional mesh, and a bit
string in the case of the hypercube, and so forth. It is implicit in the pseudocode
that we are developing that each processor involved in an in parallel statement
recognizes its own index (pid). [In practice, this is commonly accomplished
using a distributed variable id in the read-only local memory of each processor.
Then for each processor P, P:id would contain the index of processor P.] Each
processor whose index does not satisfy the Boolean expression in the for
clause is idle (masked out). The active processors simultaneously execute the

procedure <name> (<list of parameters>)

model: <model name> with p = <function of n> processors

input: <description of input parameter 1> range: <processor range 1>
 •

•
•

 <description of input parameter i> range: <processor range i>

output: <description of output parameter 1> range: <processor range 1>
 •

•
•

 <description of output parameter j> range: <processor range j>

dcl: <local variable1> range: <processor range 1>

•
•
•

 <local variable k> range: <processor range k>

Parallel Algorithms – Part 3 - 8

instructions in the body of the in parallel statement, while the remaining
processors are idle. The general form of the syntax for the in parallel
statement is:

 for <processor P>, <Boolean expression involving index of P> do in parallel
 <statement 1>
 <statement 2>
 •

•
•

 <statement k>
end in parallel

Note that the in parallel statement is counted as representing k parallel steps.
We’ll see the full meaning of this statement later, but keep it in mind now
because it represents a fundamental difference between PRAM and mesh
model parallel processing.

For interconnection networks, we’ll consider two main types of functions: those
that are simply parallel invocations of sequential functions and those that
require communication between processors. The first type of function works
within each processor’s local memory and does not require communication
between processors. For example, consider a parallel invocation of the built-in
function sin on a one-dimensional mesh Mp. Then, the statement

 for Pi , 1 ≤ i ≤ n do in parallel
 B := sin(A)
 end in parallel

where A and B are distributed variables, assigns sin(Pi: A) to Pi: B, i = 1, …, n.

The second type of function, which requires communication between
processors, is restricted to functions that return a scalar. When such a function
terminates, it is assumed that the value to be returned by the function resides in
a particular processor’s local instantiation of a suitable distributed variable. For
example, suppose the scalar value to be returned by a function implemented on
a two-dimensional mesh resides in P1,1: x. Then the return statement is given
by: return(P1,1: x). The return statement is used only for convenience and
should not be interpreted as returning a value to the front-end processor that is
directly accessible to all the processors. The returned value is resident in a
suitable output register of P1,1 only. If other processors require this returned
value, then it must be broadcast.

Parallel Algorithms – Part 3 - 9

Interprocessor Communication Statement

In the interconnection network model, recall that we used the syntax:

 Pj: y ⇐ Pi: x

for communicating processor Pi’s local variable x to an adjacent processor Pj’s
local variable y. This communication process can be viewed as consisting of the
following steps: Processor Pi fetches the value of x from its local memory and
stores it in an output register. Then the contents of this output register is
communicated to an input register of the adjacent processor Pj. Finally, Pj
writes the value in this input register to the local variable y. We will assume that
these steps constitute a single communication step which requires unit time.

The general form of the interprocessor communication statement is:

 <target processor: target variable> ⇐ <source processor: source variable>

The interprocessor communication statement is typically embedded in the body
of an in parallel statement, in which case the for clause includes a Boolean
expression involving source processor indices that determine the set of active
source processors. Any active source and corresponding target processor must
be adjacent in the interconnection network. A sample parallel interprocessor
communication statement is shown in Figure 7.

 for Pi, 2 ≤ i ≤ 2k .and. even(i) do in parallel
 Pi-1: B ⇐ Pi: A {communicate left from A to B}
 end in parallel

before execution

 after execution

Figure 7 – Action of a parallel communication step on a 1-d mesh.

 A

B

78

2

 A

B

2

3

A

B

231

7

 A

B

7

11

P3 P4 P2 P1

 A

B

78

110

 A

B

2

3

A

B

231

246

 A

B

7

11

P1 P2 P3 P4

Parallel Algorithms – Part 3 - 10

Communication is only one direction in a single parallel step, in order to
maintain a strict SIMD model. For example, in a one-dimensional mesh, some
of the active processors cannot be communicating to the left while other active
processors are communicating to the right in the same parallel communication
step. If the communication involves the same distributed variable, the term
propagate rather than communicate is used. Figure 8 illustrates a parallel
communication step where processors are both source and target.

 for Pi, 1 ≤ i ≤ n-1 do in parallel
 Pi+1: A ⇐ Pi: A {propagate A to the right}
 end in parallel

before execution

 after execution

Figure 8 – Action of a parallel communication step on a 1-d mesh with processors being both

source and target.

Figure 8 presents a reasonable view of interprocessor communication in light of
the systolic nature of a communication step. At the beginning of a
communication step, all active source processors initiate the process of sending
(pulsing) data from their local memory to the relevant adjacent processor. At
the end (after unit time has elapsed) of the communication step, this data has
been received and assigned by the target processor. Thus, it is both a natural
and common feature of many parallel algorithms to have the same processor
send information at the beginning of the communication step and receive
information at the end of the step. However, it is not permitted for any
processor to be the target or source of more than one processor during a single
communication step.

 A

B

78

2

 A

B

78

3

A

B

2

7

A

B

231

11

P3 P4 P2 P1

 A

B

78

110

 A

B

2

3

A

B

231

246

 A

B

7

11

P1 P2 P3 P4

