
Parallel Algorithms – Part 2 - 12

The Design of Parallel Algorithms

A major challenge facing computer scientists today, given the existence of
massively parallel machines, is to design algorithms which exploit this
parallelism. There are three main approaches to the design of parallel
algorithms.

1. Modify existing sequential algorithms exploiting those parts of the
algorithm that are naturally parallelizable. To some extent, this is what we
did in the last set of notes with the algorithm to find the largest key from a
set of keys. The tournament method (also called the binary fan-in
technique) is not unique to parallel algorithms, indeed the same technique
can be applied sequentially, however, that part of the algorithm is
inherently parallel.

2. Design an entirely new parallel algorithm that may have no natural
sequential analog.

3. For some problems, such as finding roots, the same sequential algorithm
is run on many different processors concurrently with different seed values
until one of the processors reports “success”. That is, all the processors
start running a sequential algorithm with different initial conditions, and the
first processor to achieve the desired result “wins the race.”

All three of these strategies are viable in certain situations and we will see
examples of each as we explore parallel algorithms further.

Architectural Constraints When Designing a Parallel Algorithm

A number of constraints arise when designing parallel algorithms that do not
occur when designing sequential algorithms. These constraints are imposed by
the architecture of the particular parallel machine on which the algorithm is
intended to be executed. We eluded to some of these constraints in the last
section of notes and now we will expand this discussion somewhat. There are
five basic constraints that we will examine in some detail, these are:

1. Single instruction versus multiple instruction architecture. Do all the
processors execute the same instruction or different instructions
concurrently?

2. The number and type of processors that are available.

Parallel Algorithms – Part 2

Parallel Algorithms – Part 2 - 13

3. Does the architecture support the PRAM model of shared memory or does
it support a distributed memory through an interconnection network?

4. Communication constraints. PRAM models have read/write restrictions
while interconnection networks must specify (through a graph) the direct
connections that exist between processors.

5. I/O constraints. How is the connection to the “outside world” handled.

Single Instruction vs. Multiple Instruction

A single-processor computer can only execute one instruction at a time. A
parallel computer with p processors can execute p instructions concurrently.
Each processor may operate on possibly different data. In the PRAM model,
each processor executes the same instruction on possibly different data
concurrently in a synchronized manner. This common instruction also contains
information that can instruct a given processor to remain idle (masked out)
during a given step. The operations of each processor must be controlled by a
front-end processor (central control) and a global clock. During each time
interval of the global clock, all the processors concurrently perform the same
operation (input or output data, perform computations on data, read from local
memories, communicate between processors, and so forth). Since the
operations pulse through the system in regular clock intervals, this model is
often referred to as systolic computing. Parallel computers that follow this
model are called SIMD (Single Instruction Multiple Data) machines. Parallel
machines that allow different instructions to be performed at the same time on
possibly different data are called MIMD (Multiple Instruction Multiple Data)
machines. Since SIMD machines are conceptually simpler and easier to
implement, we’ll focus on SIMD machines.

Number and Type of Processor

In practice, computer manufacturers must decide whether to build a coarse-
grain computer, one which has tens or hundreds of powerful processors, or a
fine-grain computer, one which has thousands and thousands of relatively
simple processors. For our modeling purposes we will consider that the
processors available are powerful enough to execute all the normal instructions
of a serial computer.

There are two approaches to designing parallel algorithms with respect to the
number of processors available. The first approach is to design the algorithm
where the number of processors used by the algorithm is an input parameter.
In this approach, the number of processors p does not depend on the input size
n. The second approach is to allow the number of processors to grow with the

Parallel Algorithms – Part 2 - 14

size of the input. Thus, the number of processors p is not an input parameter
but is a function p(n) of the input size n. Most modeling of parallel algorithms is
done using this second approach. Further, an algorithm designed under this
second approach can always be converted into an algorithm suitable for a fixed
number of processors. For example, if an algorithm has been designed that
utilizes p(n) = n2 processors, then for each parallel step of the original algorithm,
in the converted algorithm the work is divided between among the p processors
into at most n2/p sequential steps done by each processor.

PRAM and Mesh Model Communication Constraints

PRAM Model Communication Constraints

Since the PRAM model uses a shared memory, the possibility of a conflict
arises if two or more processors attempt to read or write from the same memory
location simultaneously. There are four models for dealing with such conflict:
EREW (exclusive-read, exclusive-write), CREW (concurrent-read, exclusive-
write), ERCW (exclusive-read, concurrent-write), and CRCW (concurrent-read,
concurrent-write). The ERCW is of little theoretical or practical interest, so we
will consider it no further. Figure 1 illustrates the four conflict models of PRAMs.

 … …
 (a) Concurrent Read (b) Exclusive Read

 … …

 (c) Concurrent Write (d) Exclusive Write

Figure 1 - Read/Write Possibilities for PRAMs.

P1 P3 P2 Pp

X Y

P1 P3 P2 Pp

X Y
Z

P1 P3 P2 Pp

X Y

P1 P3 P2 Pp

X Y
Z

Parallel Algorithms – Part 2 - 15

Algorithms for EREW PRAMs are assumed to be in error if a read or write
conflict ever occurs. CRCW PRAMs allow multiple processors to read and write
from the same memory location concurrently. Resolution of concurrent writes is
handled in various fashions. A commonly used technique only allows
concurrent writes when all the processors are attempting to write the same
value. Another method, which can be applied to numeric data, is to write the
sum of all these values. Still other methods involve allowing a randomly chosen
processor among the contending processors to write its value, or establishing a
total ordering of the processors and allow the processor with the smallest value
(typically pid based) to write first, and so on.

The EREW model is the most realistic of the PRAM models to build in practice.
Further, any algorithm designed for an EREW PRAM will run without alteration
on the other PRAM models. Unless otherwise noted, all PRAM algorithms
assume the EREW model. With the current state of technology, EREW PRAMs
are difficult to build (although there are efforts currently underway to do so).
Nevertheless, the PRAM model is still a very good model for theoretical results
and the initial design of a parallel algorithm without the burden of processor
communication details getting in the way of the design.

Mesh Model Communication Constraints

Most parallel computers built today more closely follow the guidelines of the
hypercube and degree-bounded network models (also called mesh models).
This means that there is an interconnection network which links the processors
together. In these models, each processor has its own RAM with no common
shared memory accessible to each processor. Since we are focusing on SIMD
machines, variables in processor memories each have instantiations in every
processor, and are thus called parallel or distributed variables. In other words,
if x is a distributed variable, then each processor in the network has a memory
location reserved for its own version of x.

In the interconnection network models, the assumption is that each processor
has sufficient memory to handle the various tasks to which it will be applied.
Nevertheless, parallel algorithms are usually written so that they require only a
constant (independent of input size) number of distributed variables. Once
again, statements which involve distributed variables might only be executed in
a subset of the available processors. Certain processors can be masked out at
certain steps.

Information is communicated between processors using messages sent along
the network. Messages pass along routes in the network where each link in a
route is between directly connected (adjacent) processors. To avoid routing

Parallel Algorithms – Part 2 - 16

conflicts most parallel algorithms will assume communication occurs in each
step between adjacent processors only. While this is not necessarily true, in
general for parallel machines, it again, makes the algorithms somewhat easier
to develop and analyze if we can remove such detail from the algorithm.

To describe how communication takes place between adjacent processors PX
and PY, suppose the central control instructs PY to assign to the variable y in its
local memory the value of the variable x in the local memory of PX. This is
accomplished as follows: PX reads the value of local variable x and sends this
value along a link in the network to PY. Upon receiving this message, PY writes
this value into its copy of y. [In parallel pseudo-code: PY:y ⇐ PX:x].

For the time being, we’ll focus on the mesh model for developing parallel
algorithms using the interconnection network model. For our example, we’ll use
the two-dimensional mesh shown in Figure 2.

Figure 2 – Two dimensional mesh of degree 4 (M4,4).

The two dimensional mesh Mq,q with p = q2 processors Pi,j, i, j ∈{1, …, q} has Pi,j
directly connected with Pr,s iff, i = r and ⏐j-s⏐=1 or ⏐i-r⏐= 1 (see Figure 2 above).

I/O Constraints

As with any computer, a parallel machine must have some mechanism to read
“outside world” data from external input devices into the processor’s local
memories, as well as to write data from these memories to external output
devices. Most parallel algorithm development takes a very high-level approach

P1,1 P1,2

P2,1 P2,2

P1,3 P1,4

P2,3 P2,4

P3,1 P3,2

P4,1 P4,2

P3,3 P3,4

P4,3 P4,4

Parallel Algorithms – Part 2 - 17

to this type of constraint, leaving the exact nature of the I/O mechanism
unspecified. Similar to single processor systems, we assume the availability of
suitable parallel versions of read and write statements.

With the PRAM model, the assumption is that central control has already placed
input data for the algorithms into the shared memory. This fact means that
relatively little use is made of read/write statements in the PRAM model.
Similarly, the interconnection network models assumes that central control has
already distributed data to the local memories of the relevant processors without
specifying the mechanism for accomplishing it. However, more use is made of
read/write statements in interconnection models than in the PRAM model, since
in the former models, it is important to specify how the data gets distributed to
the processor’s local memories. Further, in interconnection models, when a
procedure is called or a function is invoked, the algorithm must specifically
delineate those processors than have meaningful data supplied to them on input
or which are supplying meaningful output data.

Algorithm Development

Let’s now examine the development of algorithms on both PRAM and
interconnection models of parallel systems. As a running example for both
types, let’s consider the problem of searching, a fundamental problem tackled
by computer systems everyday. Assume that we have a list L[1:n] of size n and
we are searching the list for the occurrence of some key value x.

Example: Searching in the PRAM Model

We want to keep things as simple as possible while introducing parallel
algorithms, so let’s assume that we have a least n processors P1, P2, …, Pn
available. A parallel search algorithm might be executed in a single step where
processor Pi compares x to L[i], 1 ≤ i ≤ n. What constraints have we assumed
with this algorithm?

First, we assumed that each processor accessed (via a read) the memory
location containing x simultaneously. This means that we have assume a
concurrent read model.

Second, we assumed that a successful search can be signaled in a single step.
If L[i] = x, then we simply have Pi write i to a memory location index. No
problem arises, if x occurs at most once in L, however, if x occurs several times
in the list, several processors will attempt simultaneous access to index. Thus,
we assumed that our PRAM machine allowed for concurrent writes. This, of

Parallel Algorithms – Part 2 - 18

course, implies that we have established a protocol for resolving write
contention. Thus, we have assumed a CRCW PRAM machine (model).

Now let’s assume the more realistic EREW PRAM model and see the different
assumptions that must be in place for this algorithm to be successful. For each
processor to have access to the value of x simultaneously in the EREW PRAM,
we need to allocate an auxiliary array temp[1:n] and assign the value of x to
each array element temp[i], 1 ≤ i ≤ n. Assigning the value of x to each entry in
temp[1:n] can be achieved by assigning x to temp[1] and then broadcasting x to
the other positions in the array as follows: (For simplicity assume that n = 2k for
some nonnegative integer k.) In the first step, Pi reads x and writes it to
temp[1]. In the second step, P1 reads temp[1] and writes it to temp[2]. In the
third step, processors P1 and P2 read temp[1] and temp[2], respectively, and
write x to temp[3] and temp[4], respectively. This broadcasting process is
illustrated in Figure 3 when x = 5 and n = 16.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3 – Broadcasting the value of x into the array in log2n steps.

5

P1

5 5

P1

5 5 5 5

P1 P2

5 5 5 5 5 5 5 5

P1 P2 P3 P4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

P1 P2 P3 P4 P5 P6 P7 P8

Parallel Algorithms – Part 2 - 19

As Figure 3 illustrates, the broadcasting of x is complete after log2n steps.
Figure 3 also illustrates that not all processors must be active at every step in
SIMD processing.

After x has been broadcast and temp has been filled, then, in parallel, processor
Pi compares L[i] to temp[i] = x and writes i in temp[i] if L[i] = x; otherwise it writes
the value ∞ (maxint) in temp[i]. The array temp[1:n] now contains the results of
the search. The parallel search step is illustrated in Figure 4.

Temp[1:n] after parallel step

Figure 4 – Single parallel comparison step between search elements and list elements.

However, we are still left with the problem of signaling a successful search.
Note that the value that we wish to return is nothing more than the minimum
value in the temp array. Using the binary fan-in technique (see previous day’s
notes), we can obtain a straightforward parallel algorithm for determining the
minimum of a set of n numbers on an EREW PRAM processor with n/2
processors. Using the binary fan-in technique we can reduce the 15 sequential
steps required by a sequential processor to only four parallel steps, thereby
achieving a speed-up of 15/4 over the sequential algorithm.

The basic operation for a sequential search algorithm was the comparison of a
list element to the search element. In the parallel algorithm all such
comparisons are made in a single step. Therefore, we must choose another
basic operation to make a meaningful statement about the complexity (the
number of parallel basic operations) of our parallel search algorithm. We could
use either the number of parallel assignment statements performed when
broadcasting the search element or the number of parallel comparison steps in

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 -1 9 -4 2 5 -2 0 5 1 5 -5 8 5 3 -2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

∞ ∞ ∞ ∞ ∞ 6 ∞ ∞ 9 ∞ 11 ∞ ∞ 14 ∞ ∞

Parallel Algorithms – Part 2 - 20

computing the index of the minimum value in temp[1:n] in the final phase.
Either choice yields a complexity of log2n.

Example: Searching in the Two-dimensional Mesh Model

Now let’s use the same searching example and develop a parallel algorithm for
a two-dimensional mesh model (interconnection network model) and see how
the constraints of the model differ for our algorithm. Let’s consider the two-
dimensional mesh Mq.q, and as before, for convenience, let’s assume that the
list has size n = q2. As before, since the search element is a variable parameter
and not a constant, it is not possible to initialize the distributed variable P:x with
the value of the search element. We will assume that x is a front-end variable,
and initially only P1,1:x is assigned the value of x. We assume that the list L[1:n]
has been input to the distributed variable L in row-major order. Therefore,
element L[k] is assigned to processor Pi,j’s local instantiation of L, where: k = (i-
1)q+j . Each instantiation of the distributed variable index is assigned the row-
major value of its associated processor, which, unlike the assignment of the
search element to the variable x, can be done in a single parallel step since it is
a purely local computation (we assume, as typically the case, that each
processor Px,y knows its own index x,y). Figure 5 illustrates the distribution of
initial values in the mesh.

As with the PRAM, we need to broadcast the value of the search element
throughout the distributed variable x. The following simple two-phase procedure
will broadcast the value of x = P1,1: x throughout the entire distributed variable
Px,y:x, 1≤ x, y ≤ q using 2q-2 parallel communication steps. In the first phase, x
is broadcast across the first row in q-1 steps, where in the i th step, processor
P1,j communicates x to its neighbor P1, j+1 on the right, i = 1, 2, …, q-1. In the
second phase, x is broadcast down row by row. This is illustrated below:

Parallel Algorithms – Part 2 - 21

Figure 5 – Initial states of the distributed variables L, x, and index in the mesh M4,4.

After the search element has been broadcast to all n processors (so that each
Pi,j: x contains the value of the search element, in a single parallel comparison
step each processor Pi,j compares Pi,j: x to its list element Pi,j: L and writes the
value ∞ to Pi,j: index if the search element is not equal to the list element.

After the single parallel comparison step, the distributed variable index contains
the results of the search. Figure 6 illustrates the configuration of the mesh after
the parallel comparison step has completed.

P1,1 L

x

 index

2

5

1

P1,2 L

x

 index

-1

2

P1,3 L

x

 index

9

3

P1,4 L

x

 index

-4

4

P2,1 L

x

 index

2

5

P2,2 L

x

 index

5

6

P2,3 L

x

 index

-2

7

P1,4 L

x

 index

0

8

P3,1 L

x

 index

5

9

P3,2 L

x

 index

1

10

P3,3 L

x

 index

5

11

P3,4 L

x

 index

-5

12

P4,1 L

x

 index

8

13

P4,2 L

x

 index

5

14

P4,3 L

x

 index

3

15

P3,4 L

x

 index

-2

16

Parallel Algorithms – Part 2 - 22

Figure 6 – State of the distributed variables in the mesh after value 5 has been broadcast

throughout x and the single parallel comparison step has been performed.

As before, the mesh now contains the results of the search, but how do we
return the result? Typically, whenever a scalar-valued function defined on an
interconnection terminates, the value to be returned by the function resides in a
particular processor’s local instantiation of a suitable distributed variable. Let’s
assume that processor P1,1 is our designated processor to return the value of
the search in its instantiation of the distributed variable index. In other words, at
the termination of the search, we want P1,1: index to hold the smallest index i
such that L[i] = x, or ∞ if no such index exists.

P1,1 L

x

 index

2

5

∞

P1,2 L

x

 index

-1

5

∞

P1,3 L

x

 index

9

5

∞

P1,4 L

x

 index

-4

5

∞

P2,1 L

x

 index

2

5

∞

P2,2 L

x

 index

5

5

6

P2,3 L

x

 index

-2

5

∞

P1,4 L

x

 index

0

5

∞

P3,1 L

x

 index

5

5

9

P3,2 L

x

 index

1

5

∞

P3,3 L

x

 index

5

5

11

P3,4 L

x

 index

-5

5

∞

P4,1 L

x

 index

8

5

∞

P4,2 L

x

 index

5

5

14

P4,3 L

x

 index

3

5

∞

P3,4 L

x

 index

-2

5

∞

Parallel Algorithms – Part 2 - 23

To compute this minimum value, we need to perform what amounts to a reverse
broadcast procedure. In phase 1, column minimums are computed as shown in
Figure 7.

Figure 7 – Computing the minimum value on a 2-d mesh. Arrows indicate how the minimums
are computed at each state. Final result is placed in P1,1.

After completion of the computation of the minimum index value, the mesh will
have the state as shown in Figure 8.

Similar to the search algorithm we developed for the PRAM model, the search
algorithm for the 2-d mesh performs a single parallel comparison between the
search element and the elements of the list. Therefore, the communication
complexity is the appropriate metric of the complexity of the mesh search
algorithm. The number of communication steps for both the broadcast phase
and the reverse-broadcast phase is 2q-2. Thus, the complexity of the mesh
algorithm is 4q-4 = 4√n – 4, so we have achieved a speed-up of:

4n4
n
−

 over the sequential search algorithm using the 2-d mesh parallel algorithm.

Parallel Algorithms – Part 2 - 24

Figure 8 – Final state of the distributed variables in the 2-d mesh upon completion of the

searching algorithm.

P1,1 L

x

 index

2

5

6

P1,2 L

x

 index

-1

5

6

P1,3 L

x

 index

9

5

11

P1,4 L

x

 index

-4

5

∞

P2,1 L

x

 index

2

5

9

P2,2 L

x

 index

5

5

6

P2,3 L

x

 index

-2

5

11

P1,4 L

x

 index

0

5

∞

P3,1 L

x

 index

5

5

9

P3,2 L

x

 index

1

5

14

P3,3 L

x

 index

5

5

11

P3,4 L

x

 index

-5

5

∞

P4,1 L

x

 index

8

5

∞

P4,2 L

x

 index

5

5

14

P4,3 L

x

 index

3

5

∞

P3,4 L

x

 index

-2

5

∞

