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The Design of Parallel Algorithms 
 
A major challenge facing computer scientists today, given the existence of 
massively parallel machines, is to design algorithms which exploit this 
parallelism.  There are three main approaches to the design of parallel 
algorithms. 
 

1. Modify existing sequential algorithms exploiting those parts of the 
algorithm that are naturally parallelizable.  To some extent, this is what we 
did in the last set of notes with the algorithm to find the largest key from a 
set of keys.  The tournament method (also called the binary fan-in 
technique) is not unique to parallel algorithms, indeed the same technique 
can be applied sequentially, however, that part of the algorithm is 
inherently parallel. 

2. Design an entirely new parallel algorithm that may have no natural 
sequential analog. 

3. For some problems, such as finding roots, the same sequential algorithm 
is run on many different processors concurrently with different seed values 
until one of the processors reports “success”.  That is, all the processors 
start running a sequential algorithm with different initial conditions, and the 
first processor to achieve the desired result “wins the race.” 

 
All three of these strategies are viable in certain situations and we will see 
examples of each as we explore parallel algorithms further. 
 
Architectural Constraints When Designing a Parallel Algorithm 
 
A number of constraints arise when designing parallel algorithms that do not 
occur when designing sequential algorithms.  These constraints are imposed by 
the architecture of the particular parallel machine on which the algorithm is 
intended to be executed.  We eluded to some of these constraints in the last 
section of notes and now we will expand this discussion somewhat.  There are 
five basic constraints that we will examine in some detail, these are: 
 

1. Single instruction versus multiple instruction architecture.  Do all the 
processors execute the same instruction or different instructions 
concurrently? 

2. The number and type of processors that are available. 
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3. Does the architecture support the PRAM model of shared memory or does 
it support a distributed memory through an interconnection network? 

4. Communication constraints.  PRAM models have read/write restrictions 
while interconnection networks must specify (through a graph) the direct 
connections that exist between processors. 

5. I/O constraints.  How is the connection to the “outside world” handled. 
 
 
Single Instruction vs. Multiple Instruction 
 
A single-processor computer can only execute one instruction at a time.  A 
parallel computer with p processors can execute p instructions concurrently.  
Each processor may operate on possibly different data.  In the PRAM model, 
each processor executes the same instruction on possibly different data 
concurrently in a synchronized manner.  This common instruction also contains 
information that can instruct a given processor to remain idle (masked out) 
during a given step.  The operations of each processor must be controlled by a 
front-end processor (central control) and a global clock.  During each time 
interval of the global clock, all the processors concurrently perform the same 
operation ( input or output data, perform computations on data, read from local 
memories, communicate between processors, and so forth).  Since the 
operations pulse through the system in regular clock intervals, this model is 
often referred to as systolic computing.  Parallel computers that follow this 
model are called SIMD (Single Instruction Multiple Data) machines.  Parallel 
machines that allow different instructions to be performed at the same time on 
possibly different data are called MIMD (Multiple Instruction Multiple Data) 
machines.  Since SIMD machines are conceptually simpler and easier to 
implement, we’ll focus on SIMD machines. 
 
Number and Type of Processor 
 
In practice, computer manufacturers must decide whether to build a coarse-
grain computer, one which has tens or hundreds of powerful processors, or a 
fine-grain computer, one which has thousands and thousands of relatively 
simple processors.  For our modeling purposes we will consider that the 
processors available are powerful enough to execute all the normal instructions 
of a serial computer. 
 
There are two approaches to designing parallel algorithms with respect to the 
number of processors available.  The first approach is to design the algorithm 
where the number of processors used by the algorithm is an input parameter.  
In this approach, the number of processors p does not depend on the input size 
n.  The second approach is to allow the number of processors to grow with the 
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size of the input.  Thus, the number of processors p is not an input parameter 
but is a function p(n) of the input size n.  Most modeling of parallel algorithms is 
done using this second approach.  Further, an algorithm designed under this 
second approach can always be converted into an algorithm suitable for a fixed 
number of processors.  For example, if an algorithm has been designed that 
utilizes p(n) = n2 processors, then for each parallel step of the original algorithm, 
in the converted algorithm the work is divided between among the p processors 
into at most n2/p sequential steps done by each processor. 
 
PRAM and Mesh Model Communication Constraints 
 
PRAM Model Communication Constraints 
 
Since the PRAM model uses a shared memory, the possibility of a conflict 
arises if two or more processors attempt to read or write from the same memory 
location simultaneously.  There are four models for dealing with such conflict:  
EREW (exclusive-read, exclusive-write), CREW (concurrent-read, exclusive-
write), ERCW (exclusive-read, concurrent-write), and CRCW (concurrent-read, 
concurrent-write).  The ERCW is of little theoretical or practical interest, so we 
will consider it no further.  Figure 1 illustrates the four conflict models of PRAMs. 
 
 
 
 
 
 
 
         …                …  
  (a) Concurrent Read   (b)  Exclusive Read 
 
 
 
 
 
 
 
         …        … 
 
  (c) Concurrent Write   (d) Exclusive Write 
 
Figure 1 -  Read/Write Possibilities for PRAMs. 
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Algorithms for EREW PRAMs are assumed to be in error if a read or write 
conflict ever occurs.  CRCW PRAMs allow multiple processors to read and write 
from the same memory location concurrently.  Resolution of concurrent writes is 
handled in various fashions.  A commonly used technique only allows 
concurrent writes when all the processors are attempting to write the same 
value.  Another method, which can be applied to numeric data, is to write the 
sum of all these values.  Still other methods involve allowing a randomly chosen 
processor among the contending processors to write its value, or establishing a 
total ordering of the processors and allow the processor with the smallest value 
(typically pid based) to write first, and so on. 
 
The EREW model is the most realistic of the PRAM models to build in practice.  
Further, any algorithm designed for an EREW PRAM will run without alteration 
on the other PRAM models.  Unless otherwise noted, all PRAM algorithms 
assume the EREW model.  With the current state of technology, EREW PRAMs 
are difficult to build (although there are efforts currently underway to do so).  
Nevertheless, the PRAM model is still a very good model for theoretical results 
and the initial design of a parallel algorithm without the burden of processor 
communication details getting in the way of the design. 
 
Mesh Model Communication Constraints 
 
Most parallel computers built today more closely follow the guidelines of the 
hypercube and degree-bounded network models (also called mesh models).  
This means that there is an interconnection network which links the processors 
together.  In these models, each processor has its own RAM with no common 
shared memory accessible to each processor.  Since we are focusing on SIMD 
machines, variables in processor memories each have instantiations in every 
processor, and are thus called parallel  or distributed variables.  In other words, 
if x is a distributed variable, then each processor in the network has a memory 
location reserved for its own version of x. 
 
In the interconnection network models, the assumption is that each processor 
has sufficient memory to handle the various tasks to which it will be applied.  
Nevertheless, parallel algorithms are usually written so that they require only a 
constant (independent of input size) number of distributed variables.  Once 
again, statements which involve distributed variables might only be executed in 
a subset of the available processors.  Certain processors can be masked out at 
certain steps.   
  
Information is communicated between processors using messages sent along 
the network.  Messages pass along routes in the network where each link in a 
route is between directly connected (adjacent) processors.  To avoid routing 
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conflicts most parallel algorithms will assume communication occurs in each 
step between adjacent processors only.  While this is not necessarily true, in 
general for parallel machines, it again, makes the algorithms somewhat easier 
to develop and analyze if we can remove such detail from the algorithm. 
 
To describe how communication takes place between adjacent processors PX 
and PY, suppose the central control instructs PY to assign to the variable y in its 
local memory the value of the variable x in the local memory of PX.  This is 
accomplished as follows:  PX reads the value of local variable x and sends this 
value along a link in the network to PY.  Upon receiving this message, PY writes 
this value into its copy of y.  [In parallel pseudo-code: PY:y ⇐ PX:x]. 
 
For the time being, we’ll focus on the mesh model for developing parallel 
algorithms using the interconnection network model.  For our example, we’ll use 
the two-dimensional mesh shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – Two dimensional mesh of degree 4 (M4,4). 
 
The two dimensional mesh Mq,q with p = q2 processors Pi,j, i, j ∈{1, …, q} has Pi,j 
directly connected with Pr,s iff, i = r and ⏐j-s⏐=1 or ⏐i-r⏐= 1 (see Figure 2 above). 
 
I/O Constraints 
 
As with any computer, a parallel machine must have some mechanism to read 
“outside world” data from external input devices into the processor’s local 
memories, as well as to write data from these memories to external output 
devices.  Most parallel algorithm development takes a very high-level approach 
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to this type of constraint, leaving the exact nature of the I/O mechanism 
unspecified.  Similar to single processor systems, we assume the availability of 
suitable parallel versions of read and write statements. 
 
With the PRAM model, the assumption is that central control has already placed 
input data for the algorithms into the shared memory.  This fact means that 
relatively little use is made of read/write statements in the PRAM model.  
Similarly, the interconnection network models assumes that central control has 
already distributed data to the local memories of the relevant processors without 
specifying the mechanism for accomplishing it.  However, more use is made of 
read/write statements in interconnection models than in the PRAM model, since 
in the former models, it is important to specify how the data gets distributed to 
the processor’s local memories.  Further, in interconnection models, when a 
procedure is called or a function is invoked, the algorithm must specifically 
delineate those processors than have meaningful data supplied to them on input 
or which are supplying meaningful output data. 
 
Algorithm Development 
 
Let’s now examine the development of algorithms on both PRAM and 
interconnection models of parallel systems.  As a running example for both 
types, let’s consider the problem of searching, a fundamental problem tackled 
by computer systems everyday.  Assume that we have a list L[1:n] of size n and 
we are searching the list for the occurrence of some key value x. 
 
Example: Searching in the PRAM Model 
 
We want to keep things as simple as possible while introducing parallel 
algorithms, so let’s assume that we have a least n processors P1, P2, …, Pn 
available.  A parallel search algorithm might be executed in a single step where 
processor Pi compares x to L[i], 1 ≤ i ≤ n.  What constraints have we assumed 
with this algorithm? 
 
First, we assumed that each processor accessed (via a read) the memory 
location containing x simultaneously.  This means that we have assume a 
concurrent read model.  
 
Second, we assumed that a successful search can be signaled in a single step.  
If L[i] = x, then we simply have Pi write i to a memory location index.  No 
problem arises, if x occurs at most once in L, however, if x occurs several times 
in the list, several processors will attempt simultaneous access to index.  Thus, 
we assumed that our PRAM machine allowed for concurrent writes.  This, of 
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course, implies that we have established a protocol for resolving write 
contention.  Thus, we have assumed a CRCW PRAM machine (model).   
 
Now let’s assume the more realistic EREW PRAM model and see the different 
assumptions that must be in place for this algorithm to be successful.  For each 
processor to have access to the value of x simultaneously in the EREW PRAM, 
we need to allocate an auxiliary array temp[1:n] and assign the value of x to 
each array element temp[i], 1 ≤ i ≤ n.  Assigning the value of x to each entry in 
temp[1:n] can be achieved by assigning x to temp[1] and then broadcasting x to 
the other positions in the array as follows:  (For simplicity assume that n = 2k for 
some nonnegative integer k.)  In the first step, Pi reads x and writes it to 
temp[1].  In the second step, P1 reads temp[1] and writes it to temp[2].  In the 
third step, processors P1 and P2 read temp[1] and temp[2], respectively, and 
write x to temp[3] and temp[4], respectively.  This broadcasting process is 
illustrated in Figure 3 when x = 5 and n = 16. 
 
               1       2        3        4        5       6        7        8       9      10      11     12      13       14     15      16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 – Broadcasting the value of x into the array in log2n steps.   
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As Figure 3 illustrates, the broadcasting of x is complete after log2n steps.  
Figure 3 also illustrates that not all processors must be active at every step in 
SIMD processing. 
 
After x has been broadcast and temp has been filled, then, in parallel, processor 
Pi compares L[i] to temp[i] = x and writes i in temp[i] if L[i] = x; otherwise it writes 
the value ∞ (maxint) in temp[i].  The array temp[1:n] now contains the results of 
the search.  The parallel search step is illustrated in Figure 4.   
 
 
 
 
 
 
 
 
 
 
  
 

Temp[1:n] after parallel step 
 
 
 
Figure 4 – Single parallel comparison step between search elements and list elements. 
 
However, we are still left with the problem of signaling a successful search.  
Note that the value that we wish to return is nothing more than the minimum 
value in the temp array.  Using the binary fan-in technique (see previous day’s 
notes), we can obtain a straightforward parallel algorithm for determining the 
minimum of a set of n numbers on an EREW PRAM processor with n/2 
processors.  Using the binary fan-in technique we can reduce the 15 sequential 
steps required by a sequential processor to only four parallel steps, thereby 
achieving a speed-up of 15/4 over the sequential algorithm. 
 
The basic operation for a sequential search algorithm was the comparison of a 
list element to the search element.  In the parallel algorithm all such 
comparisons are made in a single step.  Therefore, we must choose another 
basic operation to make a meaningful statement about the complexity (the 
number of parallel basic operations) of our parallel search algorithm.  We could 
use either the number of parallel assignment statements performed when 
broadcasting the search element or the number of parallel comparison steps in 
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computing the index of the minimum value in temp[1:n] in the final phase.  
Either choice yields a complexity of log2n. 
 
Example: Searching in the Two-dimensional Mesh Model 
 
Now let’s use the same searching example and develop a parallel algorithm for 
a two-dimensional mesh model (interconnection network model) and see how 
the constraints of the model differ for our algorithm.  Let’s consider the two-
dimensional mesh Mq.q, and as before, for convenience, let’s assume that the 
list has size n = q2.  As before, since the search element is a variable parameter 
and not a constant, it is not possible to initialize the distributed variable P:x with 
the value of the search element.  We will assume that x is a front-end variable, 
and initially only P1,1:x is assigned the value of x.  We assume that the list L[1:n] 
has been input to the distributed variable L in row-major order.  Therefore, 
element L[k] is assigned to processor Pi,j’s local instantiation of L, where: k = (i-
1)q+j .  Each instantiation of the distributed variable index is assigned the row-
major value of its associated processor, which, unlike the assignment of the 
search element to the variable x, can be done in a single parallel step since it is 
a purely local computation (we assume, as typically the case, that each 
processor Px,y knows its own index x,y).  Figure 5 illustrates the distribution of 
initial values in the mesh. 
 
As with the PRAM, we need to broadcast the value of the search element 
throughout the distributed variable x.  The following simple two-phase procedure 
will broadcast the value of x = P1,1: x throughout the entire distributed variable 
Px,y:x, 1≤ x, y ≤ q using 2q-2 parallel communication steps.  In the first phase, x 
is broadcast across the first row in q-1 steps, where in the i th step, processor 
P1,j communicates x to its neighbor P1, j+1 on the right, i = 1, 2, …, q-1.  In the 
second phase, x is broadcast down row by row.  This is illustrated below: 
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Figure 5 – Initial states of the distributed variables L, x, and index in the mesh M4,4. 
 
After the search element has been broadcast to all n processors (so that each 
Pi,j: x contains the value of the search element, in a single parallel comparison 
step each processor Pi,j compares Pi,j: x to its list element Pi,j: L and writes the 
value ∞ to Pi,j: index if the search element is not equal to the list element.   
 
After the single parallel comparison step, the distributed variable index contains 
the results of the search.  Figure 6 illustrates the configuration of the mesh after 
the parallel comparison step has completed. 
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Figure 6 – State of the distributed variables in the mesh after value 5 has been broadcast 

throughout x and the single parallel comparison step has been performed. 
 
As before, the mesh now contains the results of the search, but how do we 
return the result?  Typically, whenever a scalar-valued function defined on an 
interconnection terminates, the value to be returned by the function resides in a 
particular processor’s local instantiation of a suitable distributed variable.  Let’s 
assume that processor P1,1 is our designated processor to return the value of 
the search in its instantiation of the distributed variable index.  In other words, at 
the termination of the search, we want P1,1: index to hold the smallest index i 
such that L[i] = x, or ∞ if no such index exists.   
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To compute this minimum value, we need to perform what amounts to a reverse 
broadcast procedure.  In phase 1, column minimums are computed as shown in 
Figure 7. 
 

Figure 7 – Computing the minimum value on a 2-d mesh.  Arrows indicate how the minimums 
are computed at each state.  Final result is placed in P1,1. 

 
After completion of the computation of the minimum index value, the mesh will 
have the state as shown in Figure 8. 
 
Similar to the search algorithm we developed for the PRAM model, the search 
algorithm for the 2-d mesh performs a single parallel comparison between the 
search element and the elements of the list.  Therefore, the communication 
complexity is the appropriate metric of the complexity of the mesh search 
algorithm.  The number of communication steps for both the broadcast phase 
and the reverse-broadcast phase is 2q-2.  Thus, the complexity of the mesh 
algorithm is 4q-4  = 4√n – 4, so we have achieved a speed-up of: 
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Figure 8 – Final state of the distributed variables in the 2-d mesh upon completion of the 

searching algorithm. 
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