
Parallel Algorithms – Part 1 - 1

Introduction

For the bulk of the term, we have discussed advanced data structures and
some of the applications to which they have been suited for representing data.
Each of these data structures was designed to provide efficient access to the
data stored in the structure. Some of these data structures were subtle variants
of a more general type of structure, with the subtle variation occurring to
enhance access to the data for certain situations arising in the data. For
example, the prefix B+-tree enhanced access through the use of prefixes that
exist in the key values maintained in the structure. Don’t lose sight of the fact
that a data structure’s sole purpose is to maintain and provide access to data
which is used to support the algorithm which uses that data. Data structures,
no matter how complex, often represent a trade-off in terms of time and space,
as there is typically no optimal data structure which covers all possible problem
instances. Recall that this is the very reason that so many variants of many
data structures exist.

We now change our focus from the underlying data structures supporting the
algorithm to the algorithms themselves. In some respects, a data structure is
chosen because of how naturally it represents the data which defines a
problem. For example, trees naturally fit with data that represent hierarchical
relationships. Algorithms too exhibit this characteristic, for example, divide and
conquer algorithms arise from the natural problem solving strategy of dividing a
complex problem into smaller, more manageable pieces. What we are about to
examine are algorithms which carry this natural technique much further.

Most models of computation represent the computer as a general-purpose,
deterministic, random access machine (a vonNeumann machine). Algorithms
which can be executed by vonNeumann type machines are called sequential
algorithms (sometimes also called serial algorithms). We are about to examine
models of computation that present a much different machine, one in which
several instructions can be executed simultaneously. Generally, referred to as,
parallel machines or parallel computers, these are computers which have more
than one processor operating in parallel. Over the years, there have been many
different models of parallel computation that have been developed. As with
sequential machines, parallel machines are best suited to certain classes of
problems and to take advantage of a parallel architecture, algorithms must be
developed specifically for the parallel architecture. We will see several parallel
models and discuss their relative merits and weaknesses.

Introduction to Parallel Algorithms

Parallel Algorithms – Part 1 - 2

In recent years, as microprocessors have become cheaper and the technology
for interconnecting them has improved, it has become both possible and
practical to build general-purpose parallel computers containing a very large
number of processors. Parallel algorithms are natural for many applications. In
image processing, for example in vision systems for robots, different parts of a
scene can be processed simultaneously in much the same way that you
process a scene in parallel. Parallelism can speed up the computation for
graphics displays (i.e., Intel’s AGP and similar systems). In search problems,
different parts of the database can be searched in parallel. Simulation
programs often do some computation to update the states of a large number of
components in the system being simulated; these can be done in parallel for
each simulated time step. Artificial intelligence applications (which include
image processing and a lot of searching) can also benefit from parallel
computation.

Parallelism

If the number of processors in parallel computers were small, say somewhere
between two and six, then there would be a practical advantage to using them
for some problems in which computation could be speeded up by some small
constant factor. However, when discussing the performance of computational
algorithms we often ignore small constants (recall Big-Oh, etc.) which would
make such machines, and their algorithms, rather uninteresting. Parallel
algorithms become interesting from a computational complexity point of view
when the number of processors is very large, larger than the input size for many
of the actual problem instances for which the algorithm in question is utilized.
This is where significant speed-up and interesting algorithms can be found and
this is the only area of parallel computation that we will examine.

How much can parallelism do for us? Suppose that a sequential algorithm for a
problem does W(n) operations in the worst case for an input of size n, and
assume that we have p processors. Then the best that we can hope for from a
parallel algorithm is to run in W(n)/p time. Furthermore, we can’t guarantee to
achieve the speed up in all cases. Consider the following example which
illustrates a fundamental problem with parallel computation.

Suppose that our problem is putting on our socks and shoes. Let’s assume for
this problem that a processor is a pair of hands. A common sequential
algorithm is: put on the right sock, put on the right shoe, put on the left sock, put
on the left shoe. (What algorithm do you use?) As a sequential algorithm this
takes 4 time units. If we have two processors we can assign one to each foot
and accomplish the task in 2 time units instead of four. However, if we have
four processors, we can’t cut the time down to one time unit, because the socks
must go on before the shoes.

Parallel Algorithms – Part 1 - 3

There are several general-purpose and special-purpose models of parallel
computers that correspond to various (either real or theoretical) hardware
designs. As we examine some of these models we will look at some parallel
algorithms within the model which will illustrate the techniques of parallel
computation. We won’t always give the most efficient algorithm, but ones that
illustrate the concepts of the model well and are also fairly easy to grasp. Some
aspects of parallel computation are quite difficult to grasp and our intention here
is to give you some background into an area of computation that may soon
become the dominant model of computation.

The PRAM Model

The parallel random access memory (PRAM, pronounced “p ram”) model of
parallel computation consists of p general-purpose processors, P0, P1, …, Pp-1,
all of which are connected to a large shared, random access memory M, which
is treated as a (very large) array of integers. This model is illustrated in Figure
1.

 0 1 2 3 Memory m-1

Figure 1 – PRAM model.

The processors have a private memory (local memory) for computational use,
but all communication among them takes place via the shared memory. Unless
it is otherwise indicated, the input for an algorithm is assumed to be in the first n
memory cells, and the output is to be placed in cell 0 (or an initial sequence of
cells). All memory cells that do not contain input are assumed to contain zero
when a PRAM algorithm (program) begins execution.

P0 P1 P2 P3 Pp-2 Pp-1

Interconnection

Parallel Algorithms – Part 1 - 4

All the processors run the same program, but each processor “knows” its own
index (called the processor id or pid), and it “knows” the input size, usually
designated as n, sometimes as a pair (n,m) or some other small, fixed set of
parameters. The program (algorithm) may instruct processors to do different
things depending on their pids. Frequently, a processor uses its pid to calculate
the index of the memory cell from which to read or into which to write.

PRAM processors are synchronized; that is, they all begin each step at the
same time, all read at the same time, and all write at the same time, within each
step. Some processors might not read or write in certain steps. Each time a
step has two phases; the read phase, in which each processor may read from a
memory cell, and the write phase, in which each processor may write to a
memory cell. Each phase may include some O(1) computation using local
variables before and after its read or write. The time allowed for these
computations is the same for all processors and all steps so that their reading
and writing remain synchronized. The model allows processors to do lengthy
(but O(1)) computations in one step because for parallel algorithms,
communication among processors through the shared memory (i.e., reading
and writing) is expected to take considerably longer than local operations within
one processor. There are several different models with different assumptions
about how much information fits in one memory cell and which local operations
are available. The algorithms that we will deal with a bit later, work with the
weakest of these assumptions, so these algorithms will be robust in this sense.

In the PRAM model, any number of processors may read the same memory cell
concurrently (i.e., at the same step). This is known as the concurrent read
model. There are also several models that prohibit concurrent reads, known as
exclusive read models. There are also several variants of the PRAM model that
differ in the fashion in which they handle write conflicts. Initially, we will
consider only algorithms that do not exhibit write conflicts and later we will
consider how to handle write conflicts.

Several programming languages exist for describing parallel algorithms, but for
now we will use a mixture of English and pseudocode before examining any
specific language. Types are usually omitted in function headers in PRAM
algorithms since the model only supports integers and arrays and we’ll make
the types clear in the context. PRAM algorithms can contain for and while loops
as each processor can keep track of a loop index and do the appropriate
incrementing and testing during the computational phases of its execution.

The use of arrays in the PRAM model mirrors the use of arrays in any high-level
programming language such as Java. That is, the compiler decides on some
fixed arrangement of the arrays in memory following the input, and translates

Parallel Algorithms – Part 1 - 5

array references to instructions to compute specific memory addresses. For
example, if the input occupies n cells, and alpha is the third k-element array, the
compiler translates an instruction telling processor Pi to read alpha[j] into
PRAM instructions to compute index = n + 2 * k + j, and then read M[index].
The address computation is completed within one PRAM step.

PRAM vs. Other Parallel Models

Although the PRAM model provides a good framework for developing and
analyzing algorithms for parallel machines, the model would be difficult and
expensive to provide in actual hardware. The PRAM assumes a complex
communication network that allows all processors to access any memory cell at
the same time, in one time step, and to write in any cell in one time step. Thus,
any processor can communicate with any other in two steps: One processor
writes some data in a memory location on one step, and the other processor
reads that location on the next step. Other parallel computation models do not
have a shared memory, thus restricting communication between processors.

A model that more closely resembles some actual hardware is the hypercube.
A hypercube has 2d processors for some d (the dimension), each connected to
its neighbors. Figure 2 shows a hypercube of dimension 3.

Figure 2 – Hypercube of dimension 3 (degree 3).

In the hypercube, each processor has its own memory and communicates with
the other processors by sending messages. At each step each processor may
do some computation, then send a message to one of its neighbors. To
communicate with a non-neighbor, a processor may send a message that
includes routing information indicating the ultimate destination; the message
might take as many as d time steps to reach its destination. In a hypercube with
p processors, each processor is connected to log2 p other processors.

Parallel Algorithms – Part 1 - 6

Another class of models, called bounded-degree networks, restricts the
connections still further. In a bounded-degree network, each processor is
directly connected to at most d other processors, for some constant d (the
degree). There are different designs for bounded-degree networks, however,
an 8×8 network is illustrated in Figure 3.

Figure 3 – Bounded-degree network (degree 4).

Hypercubes and bounded-degree networks are more realistic models than the
PRAM model, but algorithms for them can be much harder to specify and
analyze. The routing of messages among the processors, an interesting
problem in itself, is eliminated in the PRAM model.

The PRAM model, while not very practical, is conceptually easy to work with
when developing algorithms. Therefore, a lot of effort has gone to finding
efficient techniques to simulate PRAM computations on other parallel models,
particularly models that do not have shared memory. For example, each PRAM
step can be simulated in approximately O(log2 p) steps on a bounded-degree
network. Thus we can develop algorithms for the PRAM, and know that these
algorithms can be translated into algorithms for actual machines. The
translation may even be done automatically by a translator program.

Parallel Computations and Intractability

Recall that the class of problems P was defined to distinguish between tractable
and intractable problems. Class P consists of those problems that can be
solved in polynomially bounded time. For parallel computation, too, problems
are classified according to their use of resources: time and processors. The

Parallel Algorithms – Part 1 - 7

class NC1 consists of problems that can be solved by a parallel algorithm with p
(the number of processors) bounded by a polynomial in the input size, and the
number of time steps bounded by a polynomial in the logarithm of the input size.
More succinctly, if the input size is n, then p(n) ∈ O(n k) for some constant k,
and the worst-case time, T(n), is O(logm n) for some constant m. (Recall that
logm n = (log n)m).

The time bound for the class NC, sometimes referred to as “poly-log time”
because it is a polynomial in the log of n, is quite small – but we expect parallel
algorithms to run quite fast. The bound on the number of processors is not so
small. Even for k = 1, it may not be practical to use n k processors for
moderately large input. The reasons for using a polynomial bound, rather than
some specific exponent, in the definition of NC are similar to the reasons for
using a polynomial bound on time to define the class P. For one, the class of
problems that can be solved in poly-log time using a polynomially bounded
number of processors is independent of the specific parallel computation model
that is chosen from a large class of models that would be considered as
“reasonable”. Thus, NC is independent of whether we are using a PRAM or
bounded-degree network model. Secondly, if a problem cannot be solved
quickly with a polynomial number of processors, then that is a strong statement
about how hard the problem is. In fact, for many algorithms (certainly most of
the ones that we will examine), the number of processors is O(n).

PRAM Algorithms

This section will introduce some commonly used techniques for PRAM
computation by developing some simple PRAM algorithms that will illustrate the
“flavor” of parallel algorithms.

In general, PRAM algorithms are “theoretical” in the sense that they
demonstrate that a problem can be solved within a time that is in some
asymptotic order class. There are no real PRAMs that magically have more
processors for larger inputs, without limit. Therefore, there is little point in trying
to optimize constant factors, since the algorithm will not actually run as it is.
Instead we will try to present the algorithms as simply as possible and with as
much clarity as the model allows.

Consider the problem of finding the largest key in an array of n keys. A
common sequential algorithm to solve this problem is to proceed through the
array comparing max, the largest key found so far, to each remaining key. After

1 The class NC was defined and named by Steven Cook in 1985 as an abbreviation for “Nick’s class.” The name refers to
Nick Peppenger who studied the same class of problems earlier in 1979, but did so in terms of circuit complexity rather
than parallel computation. The class NC has several other equivalent definitions.

Parallel Algorithms – Part 1 - 8

each comparison, max may change; we can’t do the next comparison in parallel
because we don’t know which value to use for the next compare. However, if a
different approach is used to solve the problem then parallelism can help solve
the problem faster. Consider, as a case in point, the tournament method for
solving this problem. In the tournament method, elements are paired off and
compared in “rounds”. In succeeding rounds, the winners from the previous
round are paired off and compared as shown in Figure 4.

Figure 4 – Tournament tree for finding maximum key from n keys.

In Figure 4, the array of n keys is represented by the leaf nodes of the
tournament tree. Clearly, the largest key is found in ⎡log2 n⎤ rounds. All of the
comparisons that occur in one round can be performed concurrently (in
parallel). Therefore, the tournament method gives naturally gives us a parallel
algorithm to solve the maximum key problem.

In a tournament, the number of keys under consideration at each round
decreases by half, so the number of processors needed at each round
decreases by half. However, to keep the description of the algorithm simple
and clear, we’ll specify the same instructions for all processors at each time
step. The extra work being done by the processors which are no longer “in the
tournament” may be confusing, so before looking at the actual algorithm
consider Figure 5 which illustrates the actual work that is being done which
contributes to the answer. A straight line represents a read operation, a zigzag
line represents a write operation; a processor writes the largest key it has seen
in the memory cell with the same number as the processor (i.e., processor Pi
writes in M[i]). A circle represents a binary operation that “combines” two
values, in this case it is a comparison operation that selects the maximum of
two keys. “Bookkeeping” operations fit in around the reads and writes. If a read
line comes into Px from the column of Py, that means that Px reads from M[y],
since that is where Py wrote. Figure 6 shows the activity of all the processors

23

17 23

16 17 23 8

16 12 1 17 23 19 4 8

s
o
l
u
t
i
o
n

Parallel Algorithms – Part 1 - 9

for our example. The shaded areas of Figure 6 correspond to computations
shown in Figure 5 that actually affect the final answer.

Figure 5 – A parallel tournament. Write steps are not shown for cycles in which no processor

writes.

Parallel Algorithms – Part 1 - 10

Figure 6 – A parallel tournament showing the activity of all the processors.

Parallel Algorithms – Part 1 - 11

Parallel Tournament Algorithm for Finding Maximum Key of n Keys

Input: Keys x[0], x[1], …, x[n-1], initially in memory cells M[0], M[1], …, M[n-1].
 An integer n.

Output: The largest key will be left in M[0].

Comment: Each processor carries out the algorithm using its own index

number (pid) for a unique offset into M. The variable incr is used to
compute the upper cell number to read. Since n may not be a
power of 2, the algorithm initializes cells M[n], …, M[2*n-1] with −∞
(some small value), because some of these cells will enter the
tournament.

 parallel_tournament_max_key(M, n)
 int incr;

 write −∞ into M[n+pid];
incr = 1;

 while (incr < n)
 { key big, temp0, temp1;
 read M[pid] into temp0;
 read M[pid+incr] into temp1;
 big = max(temp0, temp1);
 write big into M[pid];
 incr = 2 * incr;
 }

