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Introduction 
 
For the bulk of the term, we have discussed advanced data structures and 
some of the applications to which they have been suited for representing data.  
Each of these data structures was designed to provide efficient access to the 
data stored in the structure.  Some of these data structures were subtle variants 
of a more general type of structure, with the subtle variation occurring to 
enhance access to the data for certain situations arising in the data.  For 
example, the prefix B+-tree enhanced access through the use of prefixes that 
exist in the key values maintained in the structure.  Don’t lose sight of the fact 
that a data structure’s sole purpose is to maintain and provide access to data 
which is used to support the algorithm which uses that data.   Data structures, 
no matter how complex, often represent a trade-off in terms of time and space, 
as there is typically no optimal data structure which covers all possible problem 
instances.   Recall that this is the very reason that so many variants of many 
data structures exist. 
 
We now change our focus from the underlying data structures supporting the 
algorithm to the algorithms themselves.  In some respects, a data structure is 
chosen because of how naturally it represents the data which defines a 
problem.  For example, trees naturally fit with data that represent hierarchical 
relationships.  Algorithms too exhibit this characteristic, for example, divide and 
conquer algorithms arise from the natural problem solving strategy of dividing a 
complex problem into smaller, more manageable pieces.  What we are about to 
examine are algorithms which carry this natural technique much further. 
 
Most models of computation represent the computer as a general-purpose, 
deterministic, random access machine (a vonNeumann machine).  Algorithms 
which can be executed by vonNeumann type machines are called sequential 
algorithms (sometimes also called serial algorithms).  We are about to examine 
models of computation that present a much different machine, one in which 
several instructions can be executed simultaneously.  Generally, referred to as, 
parallel machines or parallel computers, these are computers which have more 
than one processor operating in parallel.  Over the years, there have been many 
different models of parallel computation that have been developed.  As with 
sequential machines, parallel machines are best suited to certain classes of 
problems and to take advantage of a parallel architecture, algorithms must be 
developed specifically for the parallel architecture.  We will see several parallel 
models and discuss their relative merits and weaknesses. 

Introduction to Parallel Algorithms  
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In recent years, as microprocessors have become cheaper and the technology 
for interconnecting them has improved, it has become both possible and 
practical to build general-purpose parallel computers containing a very large 
number of processors.  Parallel algorithms are natural for many applications.  In 
image processing, for example in vision systems for robots, different parts of a 
scene can be processed simultaneously in much the same way that you 
process a scene in parallel.  Parallelism can speed up the computation for 
graphics displays (i.e., Intel’s AGP and similar systems).  In search problems, 
different parts of the database can be searched in parallel.  Simulation 
programs often do some computation to update the states of a large number of 
components in the system being simulated; these can be done in parallel for 
each simulated time step.  Artificial intelligence applications (which include 
image processing and a lot of searching) can also benefit from parallel 
computation.   
 
Parallelism 
 
If the number of processors in parallel computers were small, say somewhere 
between two and six, then there would be a practical advantage to using them 
for some problems in which computation could be speeded up by some small 
constant factor.  However, when discussing the performance of computational 
algorithms we often ignore small constants (recall Big-Oh, etc.) which would 
make such machines, and their algorithms, rather uninteresting.  Parallel 
algorithms become interesting from a computational complexity point of view 
when the number of processors is very large, larger than the input size for many 
of the actual problem instances for which the algorithm in question is utilized.  
This is where significant speed-up and interesting algorithms can be found and 
this is the only area of parallel computation that we will examine. 
 
How much can parallelism do for us?  Suppose that a sequential algorithm for a 
problem does W(n) operations in the worst case for an input of size n, and 
assume that we have p processors.  Then the best that we can hope for from a 
parallel algorithm is to run in W(n)/p time.  Furthermore, we can’t guarantee to 
achieve the speed up in all cases.  Consider the following example which 
illustrates a fundamental problem with parallel computation. 
 

Suppose that our problem is putting on our socks and shoes.  Let’s assume for 
this problem that a processor is a pair of hands.  A common sequential 
algorithm is: put on the right sock, put on the right shoe, put on the left sock, put 
on the left shoe.  (What algorithm do you use?)  As a sequential algorithm this 
takes 4 time units.  If we have two processors we can assign one to each foot 
and accomplish the task in 2 time units instead of four.  However, if we have 
four processors, we can’t cut the time down to one time unit, because the socks 
must go on before the shoes. 
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There are several general-purpose and special-purpose models of parallel 
computers that correspond to various (either real or theoretical) hardware 
designs.  As we examine some of these models we will look at some parallel 
algorithms within the model which will illustrate the techniques of parallel 
computation.  We won’t always give the most efficient algorithm, but ones that 
illustrate the concepts of the model well and are also fairly easy to grasp.  Some 
aspects of parallel computation are quite difficult to grasp and our intention here 
is to give you some background into an area of computation that may soon 
become the dominant model of computation. 
  
 
The PRAM Model 
 
The parallel random access memory (PRAM, pronounced “p ram”) model of 
parallel computation consists of p general-purpose processors, P0, P1, …, Pp-1, 
all of which are connected to a large shared, random access memory M, which 
is treated as a (very large) array of integers.  This model is illustrated in Figure 
1. 
 
 
 
 
 
 
 
 
  
 
 
 
 
               0    1    2    3                                      Memory                                                          m-1 
 
Figure 1 – PRAM model. 
 
The processors have a private memory (local memory) for computational use, 
but all communication among them takes place via the shared memory.  Unless 
it is otherwise indicated, the input for an algorithm is assumed to be in the first n 
memory cells, and the output is to be placed in cell 0 (or an initial sequence of 
cells).  All memory cells that do not contain input are assumed to contain zero 
when a PRAM algorithm (program) begins execution. 
 

P0 P1 P2 P3 Pp-2 Pp-1 

Interconnection 
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All the processors run the same program, but each processor “knows” its own 
index (called the processor id or pid), and it “knows” the input size, usually 
designated as n, sometimes as a pair (n,m) or some other small, fixed set of 
parameters.  The program (algorithm) may  instruct processors to do different 
things depending on their pids.  Frequently, a processor uses its pid to calculate 
the index of the memory cell from which to read or into which to write. 
 
PRAM processors are synchronized; that is, they all begin each step at the 
same time, all read at the same time, and all write at the same time, within each 
step.  Some processors might not read or write in certain steps.  Each time a 
step has two phases; the read phase, in which each processor may read from a 
memory cell, and the write phase, in which each processor may write to a 
memory cell.  Each phase may include some O(1) computation using local 
variables before and after its read or write.  The time allowed for these 
computations is the same for all processors and all steps so that their reading 
and writing remain synchronized.  The model allows processors to do lengthy 
(but O(1)) computations in one step because for parallel algorithms, 
communication among processors through the shared  memory (i.e., reading 
and writing) is expected to take considerably longer than local operations within 
one processor.  There are several different models with different assumptions 
about how much information fits in one memory cell and which local operations 
are available.  The algorithms that we will deal with a bit later, work with the 
weakest of these assumptions, so these algorithms will be robust in this sense. 
 
In the PRAM model, any number of processors may read the same memory cell 
concurrently (i.e., at the same step).  This is known as the concurrent read 
model.  There are also several models that prohibit concurrent reads, known as 
exclusive read models.  There are also several variants of the PRAM model that 
differ in the fashion in which they handle write conflicts.  Initially, we will 
consider only algorithms that do not exhibit write conflicts and later we will 
consider how  to handle write conflicts. 
 
Several programming languages exist for describing parallel algorithms, but for 
now we will use a mixture of English and pseudocode before examining any 
specific language.  Types are usually omitted in function headers in PRAM 
algorithms since the model only supports integers and arrays and we’ll make 
the types clear in the context.  PRAM algorithms can contain for and while loops 
as each processor can keep track of a loop index and do the appropriate 
incrementing and testing during the computational phases of its execution. 
 
The use of arrays in the PRAM model mirrors the use of arrays in any high-level 
programming language such as Java.  That is, the compiler decides on some 
fixed arrangement of the arrays in memory following the input, and translates 
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array references to instructions to compute specific memory addresses.  For 
example, if the input occupies n cells, and alpha is the third k-element array, the 
compiler translates an instruction telling processor Pi to read alpha[ j ] into 
PRAM instructions to compute index = n + 2 * k + j, and then read M[index].  
The address computation is completed within one PRAM step. 
 
PRAM vs. Other Parallel Models 
 
Although the PRAM model provides a good framework for developing and 
analyzing algorithms for parallel machines, the model would be difficult and 
expensive to provide in actual hardware.  The PRAM assumes a complex 
communication network that allows all processors to access any memory cell at 
the same time, in one time step, and to write in any cell in one time step.  Thus, 
any processor can communicate with any other in two steps: One processor 
writes some data  in a memory location on one step, and the other processor 
reads that location on the next step.  Other parallel computation models do not 
have a shared memory, thus restricting communication between processors.   
 
A model that more closely resembles some actual hardware is the hypercube.  
A hypercube has 2d processors for some d (the dimension), each connected to 
its neighbors.  Figure 2 shows a hypercube of dimension 3. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – Hypercube of dimension 3 (degree 3). 
 
In the hypercube, each processor has its own memory and communicates with 
the other processors by sending messages.  At each step each processor may 
do some computation, then send a message to one of its neighbors.  To 
communicate with a non-neighbor, a processor may send a message that 
includes routing information indicating the ultimate destination; the message 
might take as many as d time steps to reach its destination.  In a hypercube with 
p processors, each processor is connected to log2 p other processors. 
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Another class of models, called bounded-degree networks, restricts the 
connections still further.  In a bounded-degree network, each processor is 
directly connected to at most d other processors, for some constant d (the 
degree).  There are different designs for bounded-degree networks, however, 
an 8×8 network is illustrated in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 –  Bounded-degree network (degree 4). 
 
Hypercubes and bounded-degree networks are more realistic models than the 
PRAM model, but algorithms for them can be much harder to specify and 
analyze.  The routing of messages among the processors, an interesting 
problem in itself, is eliminated in the PRAM model. 
 
The PRAM model, while not very practical, is conceptually easy to work with 
when developing algorithms.  Therefore, a lot of effort has gone to finding 
efficient techniques to simulate PRAM computations on other parallel models, 
particularly models that do not have shared memory.  For example, each PRAM 
step can be simulated in approximately O(log2 p) steps on a bounded-degree 
network.  Thus we can develop algorithms for the PRAM, and know that these 
algorithms can be translated into algorithms for actual machines.  The 
translation may even be done automatically by a translator program. 
 
Parallel Computations and Intractability 
 
Recall that the class of problems P was defined to distinguish between tractable 
and intractable problems.  Class P consists of those problems that can be 
solved in polynomially bounded time.  For parallel computation, too, problems 
are classified according to their use of resources: time and processors.  The 
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class NC1 consists of problems that can be solved by a parallel algorithm with p 
(the number of processors) bounded by a polynomial in the input size, and the 
number of time steps bounded by a polynomial in the logarithm of the input size.  
More succinctly, if the input size is n, then p(n) ∈ O(n k) for some constant k, 
and the worst-case time, T(n),  is O(logm n) for some constant m.  (Recall that 
logm n = (log n)m). 
 
The time bound for the class NC, sometimes referred to as “poly-log time” 
because it is a polynomial in the log of n, is quite small – but we expect parallel 
algorithms to run quite fast.  The bound on the number of processors is not so 
small.  Even for k = 1, it may not be practical to use n k processors for 
moderately large input.  The reasons for using a polynomial bound, rather than 
some specific exponent, in the definition of NC are similar to the reasons for 
using a polynomial bound on time to define the class P.  For one, the class of 
problems that can be solved in poly-log time using a polynomially bounded 
number of processors is independent of the specific parallel computation model 
that is chosen from a large class of models that would be considered as 
“reasonable”.  Thus, NC is independent of whether we are using a PRAM or 
bounded-degree network model.  Secondly, if a problem cannot be solved 
quickly with a polynomial number of processors, then that is a strong statement 
about how hard the problem is.  In fact, for many algorithms (certainly most of 
the ones that we will examine), the number of processors is O(n). 
 
PRAM Algorithms 
 
This section will introduce some commonly used techniques for PRAM 
computation by developing some simple PRAM algorithms that will illustrate the 
“flavor” of parallel algorithms. 
 
In general, PRAM algorithms are “theoretical” in the sense that they 
demonstrate that a problem can be solved within a time that is in some 
asymptotic order class.  There are no real PRAMs that magically have more 
processors for larger inputs, without limit.  Therefore, there is little point in trying 
to optimize constant factors, since the algorithm will not actually run as it is.  
Instead we will try to present the algorithms as simply as possible and with as 
much clarity as the model allows.  
 
Consider the problem of finding the largest key in an array of n keys.  A 
common sequential algorithm to solve this problem is to proceed through the 
array comparing max, the largest key found so far, to each remaining key.  After 
                                           
1 The class NC was defined and named by Steven Cook in 1985 as an abbreviation for “Nick’s class.”  The name refers to 
Nick Peppenger who studied the same class of problems earlier in 1979, but did so in terms of circuit complexity rather 
than parallel computation.  The class NC has several other equivalent definitions. 
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each comparison, max may change; we can’t do the next comparison in parallel 
because we don’t know which value to use for the next compare.  However, if a 
different approach is used to solve the problem then parallelism can help solve 
the problem faster.  Consider, as a case in point, the tournament method for 
solving this problem.  In the tournament method, elements are paired off and 
compared in “rounds”.  In succeeding rounds, the winners from the previous 
round are paired off and compared as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – Tournament tree for finding maximum key from n keys. 
 
In Figure 4, the array of n keys is represented by the leaf nodes of the 
tournament tree.  Clearly, the largest key is found in ⎡log2 n⎤ rounds.  All of the 
comparisons that occur in one round can be performed concurrently (in 
parallel).  Therefore, the tournament method gives naturally gives us a parallel 
algorithm to solve the maximum key problem. 
 
In a tournament, the number of keys under consideration at each round 
decreases by half, so the number of processors needed at each round 
decreases by half.  However, to keep the description of the algorithm simple 
and clear, we’ll specify the same instructions for all processors at each time 
step.  The extra work being done by the processors which are no longer “in the 
tournament” may be confusing, so before looking at the actual algorithm 
consider Figure 5 which illustrates the actual work that is being done which 
contributes to the answer.  A straight line represents a read operation, a zigzag 
line represents a write operation; a processor writes the largest key it has seen 
in the memory cell with the same number as the processor (i.e., processor Pi 
writes in M[i]).  A circle represents a binary operation that “combines” two 
values, in this case it is a comparison operation that selects the maximum of 
two keys.  “Bookkeeping” operations fit in around the reads and writes.  If a read 
line comes into Px from the column of Py, that means that Px reads from M[y], 
since that is where Py wrote.  Figure 6 shows the activity of all the processors 
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for our example.  The shaded areas of Figure 6 correspond to computations 
shown in Figure 5 that actually affect the final answer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 – A parallel tournament.  Write steps are not shown for cycles in which no processor 

writes. 
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Figure 6 – A parallel tournament showing the activity of all the processors. 
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Parallel Tournament Algorithm for Finding Maximum Key of n Keys 
 
Input:  Keys x[0], x[1], …, x[n-1], initially in memory cells M[0], M[1], …, M[n-1]. 
    An integer n. 
 
Output:  The largest key will be left in M[0]. 
 
Comment:  Each processor carries out the algorithm using its own index 

number (pid) for a unique offset into M.  The variable incr is used to 
compute the upper cell number to read.  Since n may not be a 
power of 2, the algorithm initializes cells M[n], …, M[2*n-1] with −∞ 
(some small value), because some of these cells will enter the 
tournament. 

 
     parallel_tournament_max_key(M, n) 
         int  incr; 

     write −∞ into M[n+pid]; 
incr = 1; 

     while (incr < n) 
     {     key big, temp0, temp1; 
            read M[pid] into temp0; 
            read M[pid+incr] into temp1; 
            big = max(temp0, temp1); 
            write big into M[pid]; 
            incr =   2 * incr; 
     } 


