
COP 3530: Graphs – Part 8 Page 1 © Mark Llewellyn

COP 3530: Computer Science III
Summer 2005

Graphs and Graph Algorithms – Part 8

School of Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790

http://www.cs.ucf.edu/courses/cop3530/summer05

COP 3530: Graphs – Part 8 Page 2 © Mark Llewellyn

Residual Capacity
• Intuitively, the residual capacity defined by a flow f is any

additional capacity that f has not fully taken advantage of in
“pushing” its flow from source to sink.

• Let π be a path from source to sink (from s to t) that is allowed to
traverse edges in either the forward or backward direction.

– In other words, we can traverse the edge e = (u,v) from its
origin u to its destination v or from its destination v to its origin
u.

• More formally a forward edge of π is an edge of e of π such that, in
going from s to t along path π, the origin of e is encountered before
the destination of e.

• An edge which is not a forward edge is said to be a backward edge.

COP 3530: Graphs – Part 8 Page 3 © Mark Llewellyn

Residual Capacity (cont.)

• Lets’ extend the definition of the residual capacity to an edge e
in π traversed from u to v, so that ∆f (e) = ∆f (u,v). In other
words,

• Thus, the residual capacity of an edge e going in the forward
direction is the additional capacity of e that f has yet to
consume, but the residual capacity in the opposite direction is
the flow that f has consumed (and could potentially “give
back” if that allows for another flow of higher value).

⎩
⎨
⎧ −

=∆
edgebackwardaiseif)e(f
edgeforwardaiseif)e(f)e(c

)e(f

COP 3530: Graphs – Part 8 Page 4 © Mark Llewellyn

Augmenting Paths in Flow Networks
• The residual capacity ∆f (π) of a path π is the minimum

residual capacity of its edges. That is,

• This value is the maximum amount of additional flow that we
can possibly “push” down the path π without violating a
capacity constraint.

• An augmented path for flow f is a path π from source to sink
with nonzero residual capacity, that is, for each edge e of π,

– f(e) < c(e) if e is a forward edge

– f(e) > 0 if e is a backward edge

)e(min)(fef ∆=π∆
π∈

COP 3530: Graphs – Part 8 Page 5 © Mark Llewellyn

Augmenting Paths In Flow Networks (cont.)

t

d

a

s

b

esource sink

c

3/63/6

2/4

4/9

2/5

2/3

4/8

3/3

0/34/7

2/3

A backward
edge

An augmented path (highlighted in red)

COP 3530: Graphs – Part 8 Page 6 © Mark Llewellyn

Augmenting Paths In Flow Networks (cont.)

t

d

a

s

b

esource sink

c

1/63/6

4/4

6/9

2/5

2/3

4/8

3/3

2/36/7

2/3

Flow subtracts along a
backward edge

Flow f* obtained from previous flow f by pushing ∆f
(π) = 2 units of flow from s to t along path π.

Flow adds along a
forward edge

COP 3530: Graphs – Part 8 Page 7 © Mark Llewellyn

Augmenting Paths in Flow Networks (cont.)

• It can be shown that it is always possible to add the residual capacity
of an augmenting path to an existing flow and get another valid flow.

• Thus, the existence of an augmenting path π for a flow f implies that f
is not maximum. (If f were maximum we could not add an
augmenting path to determine another flow.)

• Also, given an augmenting path π, we can modify f to increase its
value by pushing ∆f (π) units of flow from source to sink along path π.

• What happens if there is no augmenting path for a flow f in a network
N ?

• Lemma: If a network N does not have an augmenting path with
respect to a flow f, then f is a maximum flow. Also, there is a cut X of
N such that |f | = c(X).

COP 3530: Graphs – Part 8 Page 8 © Mark Llewellyn

Augmenting Paths in Flow Networks (cont.)

Theorem:

Let N be a flow network. Given any flow f for N and any cut X
of N, the value of f does not exceed the capacity of X, that is:

|f| ≤ c(X)

Lemma:

If a network N does not have an augmenting path with
respect to a flow f, then f is a maximum flow. Also, there is
a cut X of N such that |f | = c(X).

COP 3530: Graphs – Part 8 Page 9 © Mark Llewellyn

Augmenting Paths in Flow Networks (cont.)

• As a consequence of the theorem and lemma shown on the
previous page, we have the following fundamental result relating
maximum flows and minimum cuts.

• The classic algorithm, due to Ford and Fulkerson, computes a
maximum flow in a network by applying the greedy method to
the augmenting path approach used to prove the Max-Flow,
Min-Cut Theorem.

The Max-Flow, Min-Cut Theorem

The value of a maximum flow is equal to the capacity
of the minimum cut.

COP 3530: Graphs – Part 8 Page 10 © Mark Llewellyn

The Ford-Fulkerson Algorithm
• The main idea of the Ford-Fulkerson algorithm is to

incrementally increase the value of a flow in stages, where at
each stage some amount of flow is pushed along an augmenting
path from the source to the sink.

• Initially, the flow of each edge is equal to 0.

• At each stage, an augmenting path π is computed and an amount
of flow equal to the residual capacity of π is pushed along π.

• The algorithm terminates when the current flow f does not admit
an augmenting path.

• The Ford-Fulkerson algorithm is shown on the next page.

COP 3530: Graphs – Part 8 Page 11 © Mark Llewellyn

The Ford-Fulkerson Algorithm (cont.)

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

This additional step was not
included in the earlier
algorithm that we examined.

COP 3530: Graphs – Part 8 Page 12 © Mark Llewellyn

Ford-Fulkerson Algorithm - Example

Gf

w

s

v

u

t

z

0/2
0/30/2

0/20/4
0/3

0/3

0/1

Gr

w

s

v

u

t

z

2
32

24
3

2

1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

COP 3530: Graphs – Part 8 Page 13 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

0/2
0/30/2

0/20/4
0/3

0/3

0/1

Gr

w

s

v

u

t

z

2
32

24
3

2

1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

COP 3530: Graphs – Part 8 Page 14 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

0/2
3/30/2

0/23/4
3/3

0/3

0/1

Gr

w

s

v

u

t

z

2
32

24
3

2

1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

COP 3530: Graphs – Part 8 Page 15 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

0/2
3/30/2

0/23/4
3/3

0/3

0/1

Gr

w

s

v

u

t

z

2
2

21

2

1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

COP 3530: Graphs – Part 8 Page 16 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

0/2
3/30/2

0/23/4
3/3

0/3

0/1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

2

Gr

w

s

v

u

t

z

2
2

2
11

-3

-3

-3

COP 3530: Graphs – Part 8 Page 17 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

0/2
3/30/2

0/23/4
3/3

0/3

0/1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

2

Gr

w

s

v

u

t

z

2
2

2
11

-3

-3

-3

COP 3530: Graphs – Part 8 Page 18 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

2/2
3/32/2

2/21/4
3/3

2/3

0/1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

2

Gr

w

s

v

u

t

z

2
2

2
11

-3

-3

-3

COP 3530: Graphs – Part 8 Page 19 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

2/2
3/32/2

2/21/4
3/3

2/3

0/1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

Gr

w

s

v

u

t

z

11

-3

-3

-1

1

COP 3530: Graphs – Part 8 Page 20 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

2/2
3/32/2

2/21/4
3/3

2/3

0/1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

-2

Gr

w

s

v

u

t

z

-2
-2

-2
31

-3

-3

-3

1

COP 3530: Graphs – Part 8 Page 21 © Mark Llewellyn

Ford-Fulkerson - Analysis

• Each augmenting path increases the flow value by at least 1.

• Let |f*| is a maximum flow, then in the worst case, Ford-
Fulkerson’s algorithm performs |f*| flow augmentations.

• Finding an augmenting path and augmenting the flow takes
O(n + m) time

• The running time of Ford-Fulkerson’s algorithm is O(|f*|(n +
m))

COP 3530: Graphs – Part 8 Page 22 © Mark Llewellyn

Ford-Fulkerson - Analysis

ts

v

u

1

5050

50 50

ts

v

u

1/1

1/500/50

1/50 0/50

Classic worst case
example:

Gf
Gr

ts

v

u

4950

49 50

-1-1
-1

COP 3530: Graphs – Part 8 Page 23 © Mark Llewellyn

Ford-Fulkerson - Analysis

ts

v

u

0/1

1/501/50

1/50 1/50

ts

v

u

1

5050

50 50

Classic worst case
example:

ts

v

u

1

4949

49 49

-1
-1

-1

-1

Gf Gr

COP 3530: Graphs – Part 8 Page 24 © Mark Llewellyn

Hamiltonian Graphs
• A Hamiltonian cycle in a graph is a cycle that passes through all

the vertices of the graph.

• Recall that we mentioned this type of cycle when we were
examining Euler paths and Euler circuits.

• A graph is called a Hamiltonian graph if it includes at least one
Hamiltonian cycle.

• There is no formula which characterizes a Hamiltonian graph as
there was with an Euler graph. However, it should be obvious
that all complete graphs are Hamiltonian. The question is how
to find a Hamiltonian cycle in a graph.

• The answer lies in the following theorem:

COP 3530: Graphs – Part 8 Page 25 © Mark Llewellyn

Hamiltonian Graphs (cont.)

Theorem:
If edge(vu) ∉ E, graph G∗ = (V, E ∪ {edge(vu)}) is
Hamiltonian, and degree(v)+ degree(u) ≥ ⏐V⏐, then graph
G = (V, E) is also Hamiltonian.

Basically, this theorem says that some Hamiltonian graphs allow us to
create Hamiltonian graphs by eliminating some of the edges in the
graph. The theorem leads directly to an algorithm that first expands the
original graph to a graph with more edges in which finding a
Hamiltonian cycle is easy (a complete graph) and then manipulates the
Hamiltonian cycle by adding some edges and removing other edges so
that eventually a Hamiltonian cycle is formed that includes the edges
that belong to the original graph. An algorithm that is based on this
theorem was developed by Chvátal in 1985.

COP 3530: Graphs – Part 8 Page 26 © Mark Llewellyn

Hamiltonian Graphs (cont.)

HamiltonianCycle(graph G = V, E))
set label of all edges to 0;
k = 1;
H = E;
GH = G;
while GH contains nonadjacent vertices v, u where degH(v) + degH(u) ≥ ⏐V⏐

H = H ∪ {edge(vu)};
GH = (V, H);
label (edge(vu)) = k++;
if there exists a Hamiltonian cycle C

while (k = max{label(edge(pq)) : edge(pq) ∈ C}) > 0
C = a cycle due to a crossover with each edge labeled with number < k;

COP 3530: Graphs – Part 8 Page 27 © Mark Llewellyn

Hamiltonian Graph - Example
• Consider the following initial graph:

A

B C

D E

F

COP 3530: Graphs – Part 8 Page 28 © Mark Llewellyn

Hamiltonian Graph – Example (cont.)

• The complete graph is constructed from the initial graph as
follows:

• In each iteration, two nonadjacent vertices are connected with an
edge if the total number of their neighbors is not less than the
number of all vertices in the graph.

• First look at all the vertices not adjacent to vertex A. For vertex
C, degH(A) + degH(C) = 3+3 = 6 ≥ ⏐V⏐= 6, thus edge(AC)
labeled with number 1 is included in H. Next vertex E is
considered, and since the degree of A just increased by 1 when it
acquired new neighbor vertex B, we have degH(A) + degH(E) =
4+2 = 6, edge(AE) labeled with 2 is included in H.

COP 3530: Graphs – Part 8 Page 29 © Mark Llewellyn

Hamiltonian Graph – Example (cont.)

• The next vertex, for which new neighbors are attempted to be
established, is B which is of degree 2. There are three non-
adjacent vertices: D, E, and F with degrees 2, 2, and 3
respectively. Therefore, the sum of B’s degree and the degree of
any of these three vertices does not reach 6 and thus no edge is
included in H.

• In the next four iterations, new neighbors are attempted for
vertices C, D, E, and F. For node C the only nonadjacent node
is D with degree 3 so we have degH(C) + degH(D) = 4+3 = 7 ≥
⏐V⏐= 6 so edge(CD) labeled 3 is included in H).

COP 3530: Graphs – Part 8 Page 30 © Mark Llewellyn

Hamiltonian Graph – Example (cont.)

• For node D the only nonadjacent node is B with degree 2 so we
have degH(D) + degH(B) = 4+2 = 6 ≥ ⏐V⏐= 6, thus edge(BD)
labeled 4 is included in H.

• For node E the nonadjacent nodes are B and F both with degree
3, so we have degH(E) + degH(B) = 3+3 ≥ ⏐V⏐= 6, thus
edge(EB) labeled 5 is added to H and since degH(E) + degH(F)
= 4+3 = 7 ≥ ⏐V⏐= 6, edge(EF) labeled 6 is added to H.

• Finally, for node F the nonadjacent nodes are B and E both with
degree 4, so we have degH(F) + degH(E) = 3+4 = 7 ≥ ⏐V⏐= 6,
thus edge(FE) labeled 6 is added to H and since degH(F) +
degH(B) = 3+5 = 8 ≥ ⏐V⏐= 6, edge(EB) labeled 7 is added to H.

• The final complete graph is shown on the next page.

COP 3530: Graphs – Part 8 Page 31 © Mark Llewellyn

Hamiltonian Graph - Example
• The initial graph including all edges required to complete the

graph:

A

B C

D E

F

4

1
2

35

7

6

COP 3530: Graphs – Part 8 Page 32 © Mark Llewellyn

Hamiltonian Graph - Example
• In the second phase of the Hamiltonian cycle algorithm, a Hamiltonian

cycle in H is found, which is: A, C, E, F, D, B, A. In this cycle, an
edge with the highest label is found, edge(EF) with label 6, as shown
in the drawing below:

A

B C

D E

F

4

1

6
Highest

labeled edge

COP 3530: Graphs – Part 8 Page 33 © Mark Llewellyn

Hamiltonian Graph - Example
• The vertices in the cycle are so ordered that the vertices in this highest

labeled edge are on the extreme ends.
• So the original Hamiltonian cycle becomes: F, D, B, A, C, E. Then

moving left to right in the this new sequence of edges in the cycle, we
try to find crossover edges by checking edges from the two neighbor
vertices to the vertices at the end of the sequence so that the edges
cross each other.

• The first possibility is vertices D and B with edge(BF) and edge(DE),
but this pair is rejected because the label of edge(BF) is greater than
the largest label of the current cycle which is 6. After this, the vertices
B and A and the edges connecting them to the ends of the sequence
edge(AF) and edge(BE) are checked; the edges are acceptable (their
labels are 0 and 5), so the old cycle F, D, B, A, C, E, F is transformed
into a new cycle F, A, C, E, B, D, F.

COP 3530: Graphs – Part 8 Page 34 © Mark Llewellyn

Hamiltonian Graph - Example
F, D, B, A, C, E F, D, B, A, C, E

crossovers
A

B C

D E

F

5

Current cycle

COP 3530: Graphs – Part 8 Page 35 © Mark Llewellyn

Hamiltonian Graph - Example
• In this new modified cycle, the edge(BE) has the highest label with

value 5, so the cycle is presented with the vertices of this edge at the
extreme ends of the sequence: B, D, F, A, C, E. To find the crossover
edges, the first pair of edges edge(BF) and edge(DE) , but the label of
edge(BF) = 7 which is greater than the largest label of the current
cycle, so the pair is rejected. The next pair is edge(AB) and edge(EF),
however, once again, the pair is unacceptable since the label on
edge(EF) is 6. The next possibility is the pair edge(BC) and
edge(AE), which is acceptable since the highest label is 2. Thus, the
new cycle B, C, E, A, F, D, B is formed.

B, D, F, A, C, E B, D, F, A, C, E

crossovers

5

Current cycle

COP 3530: Graphs – Part 8 Page 36 © Mark Llewellyn

Hamiltonian Graph - Example
B, C, E, A, F, D

A

B C

D E

F

Current cycle

4

COP 3530: Graphs – Part 8 Page 37 © Mark Llewellyn

Hamiltonian Graph - Example
• Finally, in this latest cycle, a pair of crossover edges is found,

edge(AB) and edge(DE) that are acceptable since labels on both
edges are 0 and a new cycle is formed which finally includes
only edges with labels of 0 and thus are edges which appeared in
the original graph and the algorithm terminates with the
following Hamiltonian cycle including only edges from G.

B, C, E, A, F, D B, C, E, A, F, D

crossovers

The final Hamiltonian cycle is shown in the next diagram.

Current cycle

COP 3530: Graphs – Part 8 Page 38 © Mark Llewellyn

Hamiltonian Graph - Example
B, C, E, A, F, D B, C, E, A, F, D

crossoversCurrent cycle

A

B C

D E

F

Final Hamiltonian
Cycle is:

B,A,F,D,E,C,B

