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Residual Capacity
• Intuitively, the residual capacity defined by a flow f is any 

additional capacity that f has not fully taken advantage of in 
“pushing” its flow from source to sink.

• Let π be a path from source to sink (from s to t) that is allowed to 
traverse edges in either the forward or backward direction.

– In other words, we can traverse the edge e = (u,v) from its 
origin u to its destination v or from its destination v to its origin 
u.

• More formally a forward edge of π is an edge of e of π such that, in 
going from s to t along path π, the origin of e is encountered before 
the destination of e.

• An edge which is not a forward edge is said to be a backward edge.  
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Residual Capacity (cont.)

• Lets’ extend the definition of the residual capacity to an edge e
in π traversed from u to v, so that ∆f (e) = ∆f (u,v).  In other 
words, 

• Thus, the residual capacity of an edge e going in the forward 
direction is the additional capacity of e that f has yet to 
consume, but the residual capacity in the opposite direction is 
the flow that f has consumed (and could potentially “give 
back” if that allows for another flow of higher value).

⎩
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Augmenting Paths in Flow Networks
• The residual capacity ∆f (π) of a path π is the minimum 

residual capacity of its edges.  That is,

• This value is the maximum amount of additional flow that we 
can possibly “push” down the path π without violating a 
capacity constraint.

• An augmented path for flow f is a path π from source to sink 
with nonzero residual capacity, that is, for each edge e of π, 

– f(e) < c(e)    if e is a forward edge

– f(e) > 0 if e is a backward edge

)e(min)( fef ∆=π∆
π∈
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Augmenting Paths In Flow Networks (cont.)
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Augmenting Paths In Flow Networks (cont.)
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Augmenting Paths in Flow Networks (cont.)

• It can be shown that it is always possible to add the residual capacity 
of an augmenting path to an existing flow and get another valid flow.

• Thus, the existence of an augmenting path π for a flow f implies that f
is not maximum.  ( If f were maximum we could not add an 
augmenting path to determine another flow.)

• Also, given an augmenting path π, we can modify f to increase its 
value by pushing ∆f (π) units of flow from source to sink along path π.

• What happens if there is no augmenting path for a flow f in a network 
N ?

• Lemma:  If a network N does not have an augmenting path with 
respect to a flow f, then f is a maximum flow.  Also, there is a cut X of 
N such that |f | = c(X ).
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Augmenting Paths in Flow Networks (cont.)

Theorem:

Let N be a flow network.  Given any flow f for N and any cut X 
of N, the value of f does not exceed the capacity of X, that is:

|f| ≤ c(X)

Lemma:

If a network N does not have an augmenting path with 
respect to a flow f, then f is a maximum flow.  Also, there is 
a cut X of N such that |f | = c(X ).
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Augmenting Paths in Flow Networks (cont.)

• As a consequence of the theorem and lemma shown on the 
previous page, we have the following fundamental result relating
maximum flows and minimum cuts.

• The classic algorithm, due to Ford and Fulkerson, computes a 
maximum flow in a network by applying the greedy method to 
the augmenting path approach used to prove the Max-Flow, 
Min-Cut Theorem.

The Max-Flow, Min-Cut Theorem

The value of a maximum flow is equal to the capacity 
of the minimum cut.
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The Ford-Fulkerson Algorithm
• The main idea of the Ford-Fulkerson algorithm is to 

incrementally increase the value of a flow in stages, where at 
each stage some amount of flow is pushed along an augmenting 
path from the source to the sink.  

• Initially, the flow of each edge is equal to 0.

• At each stage, an augmenting path π is computed and an amount 
of flow equal to the residual capacity of π is pushed along π.

• The algorithm terminates when the current flow f does not admit 
an augmenting path.

• The Ford-Fulkerson algorithm is shown on the next page.
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The Ford-Fulkerson Algorithm (cont.)

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop

This additional step was not 
included in the earlier 
algorithm that we examined.
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Ford-Fulkerson Algorithm - Example
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Ford-Fulkerson – Example (cont.)
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Ford-Fulkerson – Example (cont.)
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Ford-Fulkerson – Example (cont.)

Gf

w

s

v

u

t

z

0/2
3/30/2

0/23/4
3/3

0/3

0/1

Gr

w

s

v

u

t

z

2
2

21

2

1

Initialize all edges of the flow graph with zero flow
Loop while ∃ a path in Gr from s to t

find a path in Gr from s to t (augmenting path)
Add to the flow graph the minimum residual capacity from this path
Reduce the residual capacity of the edges
Add a reversed path in the residual graph

end Loop



COP 3530: Graphs – Part 8 Page 16 © Mark Llewellyn

Ford-Fulkerson – Example (cont.)
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Ford-Fulkerson – Example (cont.)
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Ford-Fulkerson – Example (cont.)
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Ford-Fulkerson – Example (cont.)
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Ford-Fulkerson – Example (cont.)
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Ford-Fulkerson - Analysis

• Each augmenting path increases the flow value by at least 1.

• Let |f*| is a maximum flow, then in the worst case, Ford-
Fulkerson’s algorithm performs |f*| flow augmentations.

• Finding an augmenting path and augmenting the flow takes 
O(n + m) time

• The running time of Ford-Fulkerson’s algorithm is O(|f*|(n +
m))
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Ford-Fulkerson - Analysis
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Ford-Fulkerson - Analysis
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Hamiltonian Graphs
• A Hamiltonian cycle in a graph is a cycle that passes through all 

the vertices of the graph.

• Recall that we mentioned this type of cycle when we were 
examining Euler paths and Euler circuits.

• A graph is called a Hamiltonian graph if it includes at least one 
Hamiltonian cycle.

• There is no formula which characterizes a Hamiltonian graph as 
there was with an Euler graph.  However, it should be obvious 
that all complete graphs are Hamiltonian.  The question is how 
to find a Hamiltonian cycle in a graph.

• The answer lies in the following theorem:
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Hamiltonian Graphs (cont.)

Theorem:
If edge(vu) ∉ E, graph G∗ = (V, E ∪ {edge(vu)}) is 
Hamiltonian, and degree(v)+ degree(u) ≥ ⏐V⏐, then graph 
G = (V, E) is also Hamiltonian.

Basically, this theorem says that some Hamiltonian graphs allow us to 
create Hamiltonian graphs by eliminating some of the edges in the 
graph.  The theorem leads directly to an algorithm that first expands the 
original graph to a graph with more edges in which finding a 
Hamiltonian cycle is easy (a complete graph) and then manipulates the 
Hamiltonian cycle by adding some edges and removing other edges so 
that eventually a Hamiltonian cycle is formed that includes the edges 
that belong to the original graph. An algorithm that is based on this 
theorem was developed by Chvátal in 1985. 
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Hamiltonian Graphs (cont.)

HamiltonianCycle( graph G = V, E))
set label of all edges to 0;
k = 1;
H = E;  
GH = G;
while GH contains nonadjacent vertices v, u where degH(v) + degH(u) ≥ ⏐V⏐

H = H ∪ {edge(vu)};
GH = (V, H);
label (edge(vu)) = k++;
if there exists a Hamiltonian cycle C

while (k = max{label(edge(pq)) : edge(pq) ∈ C}) > 0
C = a cycle due to a crossover with each edge labeled  with number < k;
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Hamiltonian Graph - Example
• Consider the following initial graph:

A
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D E

F
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Hamiltonian Graph – Example (cont.)

• The complete graph is constructed from the initial graph as 
follows:

• In each iteration, two nonadjacent vertices are connected with an 
edge if the total number of their neighbors is not less than the
number of all vertices in the graph.

• First look at all the vertices not adjacent to vertex A.  For vertex 
C, degH(A) + degH(C) = 3+3 = 6 ≥ ⏐V⏐= 6, thus edge(AC)
labeled with number 1 is included in H.  Next vertex E is 
considered, and since the degree of A just increased by 1 when it 
acquired new neighbor vertex B, we have degH(A) + degH(E) = 
4+2 = 6, edge(AE) labeled with 2 is included in H.
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Hamiltonian Graph – Example (cont.)

• The next vertex, for which new neighbors are attempted to be 
established, is B which is of degree 2.  There are three non-
adjacent vertices: D, E, and F with degrees 2, 2, and 3 
respectively.  Therefore, the sum of B’s degree and the degree of 
any of these three vertices does not reach 6 and thus no edge is
included in H.

• In the next four iterations, new neighbors are attempted for 
vertices C, D, E, and F.  For node C the only nonadjacent node 
is D with degree 3 so we have degH(C) + degH(D) = 4+3 = 7 ≥
⏐V⏐= 6 so edge(CD) labeled 3 is included in H).
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Hamiltonian Graph – Example (cont.)

• For node D the only nonadjacent node is B with degree 2 so we 
have degH(D) + degH(B) = 4+2 = 6 ≥ ⏐V⏐= 6, thus edge(BD) 
labeled 4 is included in H.

• For node E the nonadjacent nodes are B and F both with degree 
3, so we have degH(E) + degH(B) = 3+3 ≥ ⏐V⏐= 6, thus 
edge(EB) labeled 5 is added to H and since degH(E) + degH(F) 
= 4+3 = 7 ≥ ⏐V⏐= 6, edge(EF) labeled 6 is added to H.

• Finally, for node F the nonadjacent nodes are B and E both with 
degree 4, so we have degH(F) + degH(E) = 3+4 = 7 ≥ ⏐V⏐= 6, 
thus edge(FE) labeled 6 is added to H and since degH(F) + 
degH(B) = 3+5 = 8 ≥ ⏐V⏐= 6, edge(EB) labeled 7 is added to H.

• The final complete graph is shown on the next page.
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Hamiltonian Graph - Example
• The initial graph including all edges required to complete the 

graph:
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Hamiltonian Graph - Example
• In the second phase of the Hamiltonian cycle algorithm, a Hamiltonian 

cycle in H is found, which is: A, C, E, F, D, B, A.  In this cycle, an 
edge with the highest label is found, edge(EF) with label 6, as shown 
in the drawing below:

A

B C

D E

F

4

1

6
Highest 

labeled edge
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Hamiltonian Graph - Example
• The vertices in the cycle are so ordered that the vertices in this highest 

labeled edge are on the extreme ends.
• So the original Hamiltonian cycle becomes: F, D, B, A, C, E. Then 

moving left to right in the this new sequence of edges in the cycle, we 
try to find crossover edges by checking edges from the two neighbor 
vertices to the vertices at the end of the sequence so that the edges 
cross each other.

• The first possibility is vertices D and B with edge(BF) and edge(DE), 
but this pair is rejected because the label of edge(BF) is greater than 
the largest label of the current cycle which is 6.  After this, the vertices 
B and A and the edges connecting them to the ends of the sequence 
edge(AF) and edge(BE) are checked; the edges are acceptable (their 
labels are 0 and 5), so the old cycle F, D, B, A, C, E, F is transformed 
into a new cycle F, A, C, E, B, D, F.  
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Hamiltonian Graph - Example
F, D, B, A, C, E F, D, B, A, C, E

crossovers
A
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D E

F
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Hamiltonian Graph - Example
• In this new modified cycle, the edge(BE) has the highest label with 

value 5, so the cycle is presented with the vertices of this edge at the 
extreme ends of the sequence:  B, D, F, A, C, E.  To find the crossover 
edges, the first pair of edges edge(BF) and edge(DE) , but the label of 
edge(BF) = 7 which is greater than the largest label of the current 
cycle, so the pair is rejected.  The next pair is edge(AB) and edge(EF), 
however, once again, the pair is unacceptable since the label on
edge(EF) is 6.  The next possibility is the pair edge(BC) and 
edge(AE), which is acceptable since the highest label is 2. Thus, the 
new cycle B, C, E, A, F, D, B is formed.

B, D, F, A, C, E B, D, F, A, C, E

crossovers

5

Current cycle



COP 3530: Graphs – Part 8 Page 36 © Mark Llewellyn

Hamiltonian Graph - Example
B, C, E, A, F, D

A

B C

D E

F

Current cycle

4
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Hamiltonian Graph - Example
• Finally, in this latest cycle, a pair of crossover edges is found, 

edge(AB) and edge(DE) that are acceptable since labels on both 
edges are 0 and a new cycle is formed which finally includes 
only edges with labels of 0 and thus are edges which appeared in
the original graph and the algorithm terminates with the 
following Hamiltonian cycle including only edges from G.

B, C, E, A, F, D B, C, E, A, F, D

crossovers

The final Hamiltonian cycle is shown in the next diagram.

Current cycle
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Hamiltonian Graph - Example
B, C, E, A, F, D B, C, E, A, F, D

crossoversCurrent cycle

A

B C

D E

F

Final Hamiltonian 
Cycle is:

B,A,F,D,E,C,B


