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Euler Paths and Circuits
• Consider the three figures (a) – (c) shown below.  A puzzle for you to 

solve is to reconstruct these three figures using a pencil and paper 
drawing each line exactly once without lifting the pencil from the 
paper while drawing the figure.

• To make the puzzle even harder, see if you can draw the figure 
following the rules above but have the pencil finish at the same point 
you originally started the drawing.  Try to do this before you read any 
further in the notes.

(a) (b) (c)
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Euler Paths and Circuits (cont.)

• It turns out that these puzzles have a fairly simple solution.

• Figure (a) can only be drawn within the specified rules, if the 
starting point is the lower-left or lower-right hand corner, and it is 
not possible to finish at the starting point.

• Figure (b) is easily drawn with the finishing point being the same 
as the starting point (see the page XX for one possible solution).

• Figure (c) cannot be drawn at all within the specified rules, even 
though it appears to be the simplest of the drawings!

• These puzzles are converted into graph theory problems by 
assigning a vertex to each intersection.  Then the edges are 
assigned in the natural manner.  The corresponding graphs are 
shown on the next page.
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Euler Paths and Circuits

(a)

(b)

(c)
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Euler Paths and Circuits (cont.)

• To find an Euler path, once the puzzle has been converted into 
the graphs as shown on the previous page, our problem becomes 
one of finding a path that visits every edge exactly once.

• If the extra challenge is to be solved, then a cycle must be found 
that visits every edge exactly once.  This is an Euler circuit.

– This problem was solved in 1736 by the mathematician Euler and 
is commonly regarded as the beginning of graph theory.

• The Euler path and Euler circuit problems, although slightly 
different problems, have the same basic solution and we will 
focus only on the Euler circuit problem.



COP 3530: Graphs – Part 6 Page 6 © Mark Llewellyn

Euler Paths and Circuits (cont.)

• For a given graph to have an Euler circuit certain properties 
must hold in the graph.

• Namely, since an Euler circuit must begin and end on the same 
vertex, such a circuit is only possible if:

– (1) the graph is connected and,

– (2) each vertex in the graph has an even degree.

• If any vertex were to have an odd degree, then eventually you 
would reach the point where only one edge into that vertex is 
“unvisited”, and taking that edge into that vertex would strand 
you at that vertex.
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Euler Paths and Circuits (cont.)

• If exactly two vertices have an odd degree, then a Euler path is
still possible (since you are not required to begin and end on the 
same vertex in an Euler path) if the path begins on one of the 
odd degree vertices and ends on the other odd degree vertex.

• If more than two vertices have an odd degree, then an Euler path
is not possible.

• Applying this knowledge to the earlier graphs we see that:
– Graph (a) has only an Euler path beginning at either the lower left or 

lower right corners which are the two vertices with an odd degree.  All 
other vertices in this graph have an even degree of either 2 or 4.

– Graph (c) has neither an Euler circuit nor an Euler path since there are 
four vertices in this graph which have an odd degree.

– Graph (b) however has no vertices of odd degree and thus does have an 
Euler circuit (as well as an Euler path). 
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Euler Path For Graph (A)
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Another Euler Path For Graph (A)
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Euler Paths and Circuits (cont.)
• The necessary and sufficient condition for a graph to have an Euler 

circuit turns out to be exactly the conditions we have just described.

• Thus, any connected graph in which all the vertices have even degree, 
must have an Euler circuit.

• It also turns out that an Euler circuit can be found in linear time!

• The algorithm which is capable of performing this operation is a
depth-first search.

• The basic problem that must be overcome by such an algorithm is that 
only a portion of the graph may have been visited before you return to 
the original starting vertex.

• If all the edges coming out of the start vertex have been traversed. then 
part of the graph will be un-traversed.  The easiest way to fix this 
problem is to find the first vertex on the path which has an un-
traversed edge, and perform another depth-first search from this node.  
This will give another circuit, which can be spliced into the original.  
This process is continued until all edges have been traversed. 
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Euler Circuit For Graph (B)

Starting 
and 

ending 
vertex

1 – 2
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3 – 1
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Order of traversal of edges for 
Euler circuit

7

1 3

4

2

5

6

1 2

3

4

5
6

7

8

9

1011

12



COP 3530: Graphs – Part 6 Page 12 © Mark Llewellyn

Euler Circuit Example
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• Does the graph below have an Euler circuit?
Yes – every vertex has even degree.
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Euler Circuit Example (cont.)
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A depth-first search beginning at vertex 5 produces the circuit 5 – 4 – 10 – 5.

Notice that we are now stuck as there are no un-traversed edges out of 
the start vertex – yet most of the graph is still un-traversed.

1
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Euler Circuit Example (cont.)

We continue from vertex 4 (the next vertex in the circuit) which still has un-
traversed edges.

One possible depth-first search from vertex 4 would produce the circuit:  4 – 1 
– 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4.
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This new circuit is “spliced” into the existing circuit to produce the circuit:
5 – 4 – 1 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.



COP 3530: Graphs – Part 6 Page 15 © Mark Llewellyn

Euler Circuit Example (cont.)
The current circuit is: 5 – 4 – 1 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.

All edges from vertices 5, 4, and 1 have been traversed.  Vertex 3 is the next 
vertex which still has un-traversed edges and is thus selected as the next vertex 
to begin a new depth-first search.  This search might produce the following 
circuit:  3 – 2 – 8 – 9 – 6 – 3.
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This new circuit is “spliced” into the existing circuit to produce the circuit:
5 – 4 – 1 – 3 – 2 – 8 – 9 – 6 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.
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Euler Circuit Example (cont.)
The current circuit is:  5 – 4 – 1 – 3 – 2 – 8 – 9 – 6 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.

The next vertex along the circuit which still has un-traversed edges is vertex 9. A 
depth-first search at vertex 9 might produce the following circuit:  9 – 12 – 10 – 9.

This new circuit is “spliced” into the existing circuit to produce the final circuit:
5 – 4 – 1 – 3 – 2 – 8 – 9 – 12 – 10 – 9 – 6 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5
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Efficiency of Euler Circuit Producing Algorithms
• The implementation issues that concern any algorithm which 

determines an Euler circuit are concerned mainly with the efficiency 
of the circuit splicing operation.

• To do this efficiently requires that the circuit being constructed be 
maintained as a linked list so that new sub-circuits can be easily added 
to the middle of an existing circuit as we did in the previous example.

• To avoid repetitious scanning of the adjacency lists which define the 
graph it is best to maintain (for each list) a record of the last edge 
traversed.  When a path is spliced in, the search for a new vertex from 
which to perform the next depth-first search must begin at the start of 
the splice point.  This will guarantee that the total work performed on 
the vertex search phase is O(⏐E⏐) during the entire lifetime of the 
algorithm.

• With the appropriate data structures in place, the running time of an 
algorithm to determine the Euler circuit will be O(⏐E⏐+ ⏐V⏐).
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Minimum Spanning Tree
Spanning subgraph

– Subgraph of a graph G containing 
all the vertices of G

Spanning tree
– Spanning subgraph that is itself a 

(free) tree
Minimum spanning tree (MST)

– Spanning tree of a weighted graph 
with minimum total edge weight

• Applications
– Communications networks
– Transportation networks
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Cycle Property
For any spanning tree T, if an edge e that is 

not in T is added, a cycle will be 
created.

The removal of any edge on the cycle will 
reinstate the spanning tree property.

The cost of the spanning tree is lowered if e
has a lower cost than the edge that was 
removed.  

If, as a spanning tree is created, the edge 
that is added is the one with the 
minimum cost, the creation of the cycle 
will be avoided and the cost associated 
with the tree cannot be improved 
because any replacement edge would 
have an associated cost of at least as 
much as the edge already included in the 
spanning tree. 
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Replacing f with e yields
a better spanning tree 
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Minimum Spanning Tree
• Prim’s Algorithm (Prim-Jarnik Algorithm)

– Label cost of each vertex as ∞ (or 0 for the start vertex)
– Loop while there is a vertex

• Remove a vertex that will extend the tree with minimum additional cost
• Check and if required update the path length of its adjacent neighbors 

(Update rule different from Dijkstra’s algorithm)
– end loop

Update rule:
Let ‘a’ be the vertex removed and ‘b’ be its adjacent vertex
Let ‘e’ be the edge connecting a to b. 
if (e.weight < b.cost)

b.cost←e.weight
b.parent ← a
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6
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2

6 E
6 1

8
2
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MST: Prim-Jarnik’s Algorithm
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MST: Prim-Jarnik’s Algorithm
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Set distance to all vertices 
adjacent to vertex A.
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MST: Prim-Jarnik’s Algorithm
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Use greedy approach to select next 
vertex in MST – in this example either B 
or D could be chosen.
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MST: Prim-Jarnik’s Algorithm
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Set vertex B as visited and 
adjust distances to vertices 
adjacent to B.
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MST: Prim-Jarnik’s Algorithm
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Greed approach selects D as the 
next vertex – so mark as visited.
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MST: Prim-Jarnik’s Algorithm
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Reset distances to vertices adjacent 
to vertex D.
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MST: Prim-Jarnik’s Algorithm
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Greedy approach selects vertex E 
next.  Mark as visited in the table.
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MST: Prim-Jarnik’s Algorithm
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In this case – no distances 
are decreased to vertices 
adjacent to E.
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MST: Prim-Jarnik’s Algorithm
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Final table has all vertices visited and minimum 
edge weights identified.  The MST is also 
identified in the table.  A is set as the root of the 
MST, B and D are children of A while C and E 
are children of D in the MST.

A

B D

C E
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Prim-Jarnik AlgorithmAlgorithm MST (G)
Q ← new priority queue
Let s be any vertex
for all v ∈ G.vertices()

if v = s 
v.cost ← 0

else v.cost ← ∞
v. parent ← null

Q.enQueue(v.cost, v)
while ¬Q.isEmpty()

v ← Q .removeMin()
v.pathKnown ← true
for all e ∈ G.incidentEdges(v)

w ← opposite(v,e)
if ¬w.pathKnown

if weight(e) < w.cost
w.cost ← weight(e)
w. parent ← v
update key of w in Q

O(n)

O(n log n)

O((n+m) log n)
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Example
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Example (cont.)
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Partition Property
Partition Property:

– Consider a partition of the vertices of G
into subsets U and V

– Let e be an edge of minimum weight 
across the partition

– There is a minimum spanning tree of G
containing edge e

Proof:
– Let T be an MST of G
– If T does not contain e, consider the 

cycle C formed by e with T and let  f be 
an edge of C across the partition

– By the cycle property,
weight(f) ≤ weight(e)

– Thus, weight(f) = weight(e)
– We obtain another MST by replacing f  

with e

U V
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8 e

f
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2 8
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8 e

f

Replacing f with e yields
another MST

U V
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Minimum Spanning Tree
• Kruskal’s Algorithm

– Create a forest of n trees
– Loop while (there is > 1 tree in the forest)

• Remove an edge with minimum weight
• Accept the edge only if it connects 2 trees from the forest in to 

one.
– end loop

C D
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26 E
6 1

8

E D C B A

The 
forest
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MST: Kruskal’s Algorithm
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MST: Kruskal’s Algorithm
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MST: Kruskal’s Algorithm
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MST: Kruskal’s Algorithm
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Kruskal’s Algorithm
Algorithm KruskalMST(G)

let Q be a priority queue.
Insert all edges into Q using their

weights as the key
Create a forest of n trees 

where each vertex is a tree
numberOfTrees ← n
while numberOfTrees > 1do

edge e ← Q.removeMin()
Let u, v be the endpoints of e
if Tree(v) ≠ Tree(u) then

Combine Tree(v) and Tree(u)
using edge e

decrement numberOfTrees 
return T

O(m log m)

O(m log m)
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Kruskal Example
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1391
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946
1090

1121
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1235
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Minimum Spanning Tree
• Baruvka’s Algorithm 

– Create a forest of n trees
– Loop while (there is > 1 tree in the forest)

• For each tree Ti in the forest
– Find the smallest edge e = (u,v), in the edge list with u in Ti and v in Tj ≠Ti

– connects 2 trees from the forest in to one.

– end loop

B

C D

A

6

7

2

56 E
6 1

8

E D C B A
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Baruvka’s Algorithm
• Like Kruskal’s Algorithm, Baruvka’s algorithm grows 

many “clouds” at once.

• Each iteration of the while-loop halves the number of 
connected components in T.
– The running time is O(m log n).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than n-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T
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Baruvka’s MST Algorithm - Example

E

D
F

B

C

A

1

1 2

2

6

5
7

9

A: edges a-c = 7,  a-e = 9

select edge a-c, since c not in tree

B: edges b-c = 5, b-f = 6

select edge b-c, since c not in tree

C: edges c-a = 7, c-b = 5, c-d = 1, c-f = 2
can’t select c-a since a is in tree
can’t select c-b since b is in tree
select c-d since d not in tree

D: edges d-c = 1, d-f = 2
can’t select d-c since c is in tree
select d-f since f not in tree

E: edges e-a = 9, e-f = 1

select e-f since f not in tree

F: edges f-b = 6, f-c = 2, f-d = 2, f-e = 1

f already included in the tree E

D
F

B

C

A



COP 3530: Graphs – Part 6 Page 57 © Mark Llewellyn

Baruvka’s MST Algorithm – Example 2

E

D

F

B

C

A

1

1

2

1

1

G

1

1

4

5 H I

J

K

2

1

1

1
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Baruvka’s MST Algorithm – Example 2

E

D

F

B

C

A

1

1

2

1

G

1

H I

J

K

2

1

1

PASS #1
A: edge a-b = 2

B: edge b-c = 1

C: edge c-d = 1

D: none

E: edge e-f = 1

F: edge f-g = 1

G: none

H: edge h-i = 2

I: edge i-j = 1

J: edge j-k = 1

K: none
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Baruvka’s MST Algorithm – Example 2

E

D

F

B

C

A

1

1

2

1

G

1

H I

J

K

2

1

1

PASS #2
A: edge a-e = 4

B: none

C: none

D: none

E: none

F: none

G: none

H: edge a-h = 5

I: none

J: none

K: none

4

5
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Minimum Spanning Tree – Practice Problem

Generate the minimum spanning tree for the graph shown below 
using Prim’s, Kruskal’s, and Baruvka’s algorithms.  (Answer on 
next page.)

1 2

3 4 5

76

2

2

1

1

4

4 6

103

7

85
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Minimum Spanning Tree – Practice Problem

Each of the algorithms generates the same MST.  Why?

1 2

3 4 5

76

2

2

1

1

4 6
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Minimum Spanning Tree – Practice Problem

Table from Prim’s algorithm.

44T7

71T6

76T5

11T4

42T3

12T2

00T1

vertex causing
change to
min weight

Minimum
weightvisitedvertex

56

1

24

3 7


