
COP 3530: Graphs – Part 6 Page 1 © Mark Llewellyn

COP 3530: Computer Science III
Summer 2005

Graphs and Graph Algorithms – Part 6

School of Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790

http://www.cs.ucf.edu/courses/cop3530/summer05

COP 3530: Graphs – Part 6 Page 2 © Mark Llewellyn

Euler Paths and Circuits
• Consider the three figures (a) – (c) shown below. A puzzle for you to

solve is to reconstruct these three figures using a pencil and paper
drawing each line exactly once without lifting the pencil from the
paper while drawing the figure.

• To make the puzzle even harder, see if you can draw the figure
following the rules above but have the pencil finish at the same point
you originally started the drawing. Try to do this before you read any
further in the notes.

(a) (b) (c)

COP 3530: Graphs – Part 6 Page 3 © Mark Llewellyn

Euler Paths and Circuits (cont.)

• It turns out that these puzzles have a fairly simple solution.

• Figure (a) can only be drawn within the specified rules, if the
starting point is the lower-left or lower-right hand corner, and it is
not possible to finish at the starting point.

• Figure (b) is easily drawn with the finishing point being the same
as the starting point (see the page XX for one possible solution).

• Figure (c) cannot be drawn at all within the specified rules, even
though it appears to be the simplest of the drawings!

• These puzzles are converted into graph theory problems by
assigning a vertex to each intersection. Then the edges are
assigned in the natural manner. The corresponding graphs are
shown on the next page.

COP 3530: Graphs – Part 6 Page 4 © Mark Llewellyn

Euler Paths and Circuits

(a)

(b)

(c)

COP 3530: Graphs – Part 6 Page 5 © Mark Llewellyn

Euler Paths and Circuits (cont.)

• To find an Euler path, once the puzzle has been converted into
the graphs as shown on the previous page, our problem becomes
one of finding a path that visits every edge exactly once.

• If the extra challenge is to be solved, then a cycle must be found
that visits every edge exactly once. This is an Euler circuit.

– This problem was solved in 1736 by the mathematician Euler and
is commonly regarded as the beginning of graph theory.

• The Euler path and Euler circuit problems, although slightly
different problems, have the same basic solution and we will
focus only on the Euler circuit problem.

COP 3530: Graphs – Part 6 Page 6 © Mark Llewellyn

Euler Paths and Circuits (cont.)

• For a given graph to have an Euler circuit certain properties
must hold in the graph.

• Namely, since an Euler circuit must begin and end on the same
vertex, such a circuit is only possible if:

– (1) the graph is connected and,

– (2) each vertex in the graph has an even degree.

• If any vertex were to have an odd degree, then eventually you
would reach the point where only one edge into that vertex is
“unvisited”, and taking that edge into that vertex would strand
you at that vertex.

COP 3530: Graphs – Part 6 Page 7 © Mark Llewellyn

Euler Paths and Circuits (cont.)

• If exactly two vertices have an odd degree, then a Euler path is
still possible (since you are not required to begin and end on the
same vertex in an Euler path) if the path begins on one of the
odd degree vertices and ends on the other odd degree vertex.

• If more than two vertices have an odd degree, then an Euler path
is not possible.

• Applying this knowledge to the earlier graphs we see that:
– Graph (a) has only an Euler path beginning at either the lower left or

lower right corners which are the two vertices with an odd degree. All
other vertices in this graph have an even degree of either 2 or 4.

– Graph (c) has neither an Euler circuit nor an Euler path since there are
four vertices in this graph which have an odd degree.

– Graph (b) however has no vertices of odd degree and thus does have an
Euler circuit (as well as an Euler path).

COP 3530: Graphs – Part 6 Page 8 © Mark Llewellyn

Euler Path For Graph (A)

6

2 4

51

3

Starting
vertex

1 – 2

2 – 3

3 – 4

4 – 2

2 – 6

6 – 1

1 – 5

5 – 6

6 – 4

4 – 5

Order of traversal of edges for
Euler path

Ending
vertex

1

2 3

4

5

6

7

8

9

10

COP 3530: Graphs – Part 6 Page 9 © Mark Llewellyn

Another Euler Path For Graph (A)

6

2 4

51

3

Starting
vertex

5 – 4

4 – 3

3 – 2

2 – 4

4 – 6

6 – 5

5 – 1

1 – 6

6 –2

2 - 1

Order of traversal of edges for
Euler path

Ending
vertex

10

3 2

4

9

8

7

6

5

1

COP 3530: Graphs – Part 6 Page 10 © Mark Llewellyn

Euler Paths and Circuits (cont.)
• The necessary and sufficient condition for a graph to have an Euler

circuit turns out to be exactly the conditions we have just described.

• Thus, any connected graph in which all the vertices have even degree,
must have an Euler circuit.

• It also turns out that an Euler circuit can be found in linear time!

• The algorithm which is capable of performing this operation is a
depth-first search.

• The basic problem that must be overcome by such an algorithm is that
only a portion of the graph may have been visited before you return to
the original starting vertex.

• If all the edges coming out of the start vertex have been traversed. then
part of the graph will be un-traversed. The easiest way to fix this
problem is to find the first vertex on the path which has an un-
traversed edge, and perform another depth-first search from this node.
This will give another circuit, which can be spliced into the original.
This process is continued until all edges have been traversed.

COP 3530: Graphs – Part 6 Page 11 © Mark Llewellyn

Euler Circuit For Graph (B)

Starting
and

ending
vertex

1 – 2

2 – 3

3 – 1

1 – 7

7 – 4

4 – 3

3 – 7

7 – 6

6 – 4

4 – 5

5 – 6

6 – 1

Order of traversal of edges for
Euler circuit

7

1 3

4

2

5

6

1 2

3

4

5
6

7

8

9

1011

12

COP 3530: Graphs – Part 6 Page 12 © Mark Llewellyn

Euler Circuit Example

2

8

6

3

9

1

7

12

4

10

5

11

• Does the graph below have an Euler circuit?
Yes – every vertex has even degree.

COP 3530: Graphs – Part 6 Page 13 © Mark Llewellyn

Euler Circuit Example (cont.)

2

8

6

3

9

1

7

12

4

10

5

11

A depth-first search beginning at vertex 5 produces the circuit 5 – 4 – 10 – 5.

Notice that we are now stuck as there are no un-traversed edges out of
the start vertex – yet most of the graph is still un-traversed.

1

2
3

COP 3530: Graphs – Part 6 Page 14 © Mark Llewellyn

Euler Circuit Example (cont.)

We continue from vertex 4 (the next vertex in the circuit) which still has un-
traversed edges.

One possible depth-first search from vertex 4 would produce the circuit: 4 – 1
– 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4.

2

8

6

3

9

1

7

12

4

10

5

11

1

2
3

45

6 7

8

9

1011
12

13

This new circuit is “spliced” into the existing circuit to produce the circuit:
5 – 4 – 1 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.

COP 3530: Graphs – Part 6 Page 15 © Mark Llewellyn

Euler Circuit Example (cont.)
The current circuit is: 5 – 4 – 1 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.

All edges from vertices 5, 4, and 1 have been traversed. Vertex 3 is the next
vertex which still has un-traversed edges and is thus selected as the next vertex
to begin a new depth-first search. This search might produce the following
circuit: 3 – 2 – 8 – 9 – 6 – 3.

2

8

6

3

9

1

7

12

4

10

5

11

1

2
3

45

6 7

8

9

1011
12

13

This new circuit is “spliced” into the existing circuit to produce the circuit:
5 – 4 – 1 – 3 – 2 – 8 – 9 – 6 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.

14

15

16

17

18

COP 3530: Graphs – Part 6 Page 16 © Mark Llewellyn

Euler Circuit Example (cont.)
The current circuit is: 5 – 4 – 1 – 3 – 2 – 8 – 9 – 6 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5.

The next vertex along the circuit which still has un-traversed edges is vertex 9. A
depth-first search at vertex 9 might produce the following circuit: 9 – 12 – 10 – 9.

This new circuit is “spliced” into the existing circuit to produce the final circuit:
5 – 4 – 1 – 3 – 2 – 8 – 9 – 12 – 10 – 9 – 6 – 3 – 7 – 4 – 11 – 10 – 7 – 9 – 3 – 4 – 10 – 5

2

8

6

3

9

1

7

12

4

10

5

11

1

2
3

45

6 7

8

9

1011
12

1314

15

16

17

18

19 20

21

COP 3530: Graphs – Part 6 Page 17 © Mark Llewellyn

Efficiency of Euler Circuit Producing Algorithms
• The implementation issues that concern any algorithm which

determines an Euler circuit are concerned mainly with the efficiency
of the circuit splicing operation.

• To do this efficiently requires that the circuit being constructed be
maintained as a linked list so that new sub-circuits can be easily added
to the middle of an existing circuit as we did in the previous example.

• To avoid repetitious scanning of the adjacency lists which define the
graph it is best to maintain (for each list) a record of the last edge
traversed. When a path is spliced in, the search for a new vertex from
which to perform the next depth-first search must begin at the start of
the splice point. This will guarantee that the total work performed on
the vertex search phase is O(⏐E⏐) during the entire lifetime of the
algorithm.

• With the appropriate data structures in place, the running time of an
algorithm to determine the Euler circuit will be O(⏐E⏐+ ⏐V⏐).

COP 3530: Graphs – Part 6 Page 18 © Mark Llewellyn

Minimum Spanning Tree
Spanning subgraph

– Subgraph of a graph G containing
all the vertices of G

Spanning tree
– Spanning subgraph that is itself a

(free) tree
Minimum spanning tree (MST)

– Spanning tree of a weighted graph
with minimum total edge weight

• Applications
– Communications networks
– Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

COP 3530: Graphs – Part 6 Page 19 © Mark Llewellyn

Cycle Property
For any spanning tree T, if an edge e that is

not in T is added, a cycle will be
created.

The removal of any edge on the cycle will
reinstate the spanning tree property.

The cost of the spanning tree is lowered if e
has a lower cost than the edge that was
removed.

If, as a spanning tree is created, the edge
that is added is the one with the
minimum cost, the creation of the cycle
will be avoided and the cost associated
with the tree cannot be improved
because any replacement edge would
have an associated cost of at least as
much as the edge already included in the
spanning tree.

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

COP 3530: Graphs – Part 6 Page 20 © Mark Llewellyn

Minimum Spanning Tree
• Prim’s Algorithm (Prim-Jarnik Algorithm)

– Label cost of each vertex as ∞ (or 0 for the start vertex)
– Loop while there is a vertex

• Remove a vertex that will extend the tree with minimum additional cost
• Check and if required update the path length of its adjacent neighbors

(Update rule different from Dijkstra’s algorithm)
– end loop

Update rule:
Let ‘a’ be the vertex removed and ‘b’ be its adjacent vertex
Let ‘e’ be the edge connecting a to b.
if (e.weight < b.cost)

b.cost←e.weight
b.parent ← a

C D

A
B

6

7

2

6 E
6 1

8
2

COP 3530: Graphs – Part 6 Page 21 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

∞
0

∞

∞
∞

2

0∞FE

0∞FD

0∞FC

0∞FB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

COP 3530: Graphs – Part 6 Page 22 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E

6 1
8

2,A
0

7,A

2,A

∞

2

A7FE

A2FD

0∞FC

A2FB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

Set distance to all vertices
adjacent to vertex A.

COP 3530: Graphs – Part 6 Page 23 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

2,A
0

7,A

2,A

∞

2

A7FE

A2FD

0∞FC

A2FB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

Use greedy approach to select next
vertex in MST – in this example either B
or D could be chosen.

COP 3530: Graphs – Part 6 Page 24 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

2,A
0

6,B

2,A
8,B

2

B6FE

A2FD

B8FC

A2TB

00TA

vertex causing
change to min
weight

Minimu
m
weight

visitedvertex

Set vertex B as visited and
adjust distances to vertices
adjacent to B.

COP 3530: Graphs – Part 6 Page 25 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

2,A
0

6,B

2,A
8,B

2

B6FE

A2TD

B8FC

A2TB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

Greed approach selects D as the
next vertex – so mark as visited.

COP 3530: Graphs – Part 6 Page 26 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

2,A
0

1,D

2,A
6,D

2

D1FE

A2TD

D6FC

A2TB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

Reset distances to vertices adjacent
to vertex D.

COP 3530: Graphs – Part 6 Page 27 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

2,A
0

1,D

2,A
6,D

2

D1TE

A2TD

D6FC

A2TB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

Greedy approach selects vertex E
next. Mark as visited in the table.

COP 3530: Graphs – Part 6 Page 28 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

2,A
0

1,D

2,A
6,D

2

D1TE

A2TD

D6FC

A2TB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

In this case – no distances
are decreased to vertices
adjacent to E.

COP 3530: Graphs – Part 6 Page 29 © Mark Llewellyn

MST: Prim-Jarnik’s Algorithm

C D

A
B

6

7

2

6 E
6 1

8

2,A
0

1,D

2,A
6,D

2
D1TE

A2TD

D6TC

A2TB

00TA

vertex causing
change to min
weight

Minimum
weightvisitedvertex

Final table has all vertices visited and minimum
edge weights identified. The MST is also
identified in the table. A is set as the root of the
MST, B and D are children of A while C and E
are children of D in the MST.

A

B D

C E

COP 3530: Graphs – Part 6 Page 30 © Mark Llewellyn

Prim-Jarnik AlgorithmAlgorithm MST (G)
Q ← new priority queue
Let s be any vertex
for all v ∈ G.vertices()

if v = s
v.cost ← 0

else v.cost ← ∞
v. parent ← null

Q.enQueue(v.cost, v)
while ¬Q.isEmpty()

v ← Q .removeMin()
v.pathKnown ← true
for all e ∈ G.incidentEdges(v)

w ← opposite(v,e)
if ¬w.pathKnown

if weight(e) < w.cost
w.cost ← weight(e)
w. parent ← v
update key of w in Q

O(n)

O(n log n)

O((n+m) log n)

COP 3530: Graphs – Part 6 Page 31 © Mark Llewellyn

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ∞

∞

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

COP 3530: Graphs – Part 6 Page 32 © Mark Llewellyn

Example (cont.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

COP 3530: Graphs – Part 6 Page 33 © Mark Llewellyn

Partition Property
Partition Property:

– Consider a partition of the vertices of G
into subsets U and V

– Let e be an edge of minimum weight
across the partition

– There is a minimum spanning tree of G
containing edge e

Proof:
– Let T be an MST of G
– If T does not contain e, consider the

cycle C formed by e with T and let f be
an edge of C across the partition

– By the cycle property,
weight(f) ≤ weight(e)

– Thus, weight(f) = weight(e)
– We obtain another MST by replacing f

with e

U V

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

COP 3530: Graphs – Part 6 Page 34 © Mark Llewellyn

Minimum Spanning Tree
• Kruskal’s Algorithm

– Create a forest of n trees
– Loop while (there is > 1 tree in the forest)

• Remove an edge with minimum weight
• Accept the edge only if it connects 2 trees from the forest in to

one.
– end loop

C D

A
B

6

7

2

26 E
6 1

8

E D C B A

The
forest

COP 3530: Graphs – Part 6 Page 35 © Mark Llewellyn

MST: Kruskal’s Algorithm

C D

A
B

6

7

2

26 E
6 1

8

E D C B A

COP 3530: Graphs – Part 6 Page 36 © Mark Llewellyn

MST: Kruskal’s Algorithm

C D

A
B

6

7

2

26 E
6 1

8

E D C B A

COP 3530: Graphs – Part 6 Page 37 © Mark Llewellyn

MST: Kruskal’s Algorithm

C D

A
B

6

7

2

26 E
6 1

8

E D C B A

COP 3530: Graphs – Part 6 Page 38 © Mark Llewellyn

MST: Kruskal’s Algorithm

C D

A
B

6

7

2

26 E
6 1

8

E D C B A

B

E

D

C

A

COP 3530: Graphs – Part 6 Page 39 © Mark Llewellyn

Kruskal’s Algorithm
Algorithm KruskalMST(G)

let Q be a priority queue.
Insert all edges into Q using their

weights as the key
Create a forest of n trees

where each vertex is a tree
numberOfTrees ← n
while numberOfTrees > 1do

edge e ← Q.removeMin()
Let u, v be the endpoints of e
if Tree(v) ≠ Tree(u) then

Combine Tree(v) and Tree(u)
using edge e

decrement numberOfTrees
return T

O(m log m)

O(m log m)

COP 3530: Graphs – Part 6 Page 40 © Mark Llewellyn

Kruskal Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

COP 3530: Graphs – Part 6 Page 41 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 42 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 43 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 44 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 45 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 46 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 47 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 48 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 49 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 50 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 51 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 52 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 53 © Mark Llewellyn

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

COP 3530: Graphs – Part 6 Page 54 © Mark Llewellyn

Minimum Spanning Tree
• Baruvka’s Algorithm

– Create a forest of n trees
– Loop while (there is > 1 tree in the forest)

• For each tree Ti in the forest
– Find the smallest edge e = (u,v), in the edge list with u in Ti and v in Tj ≠Ti

– connects 2 trees from the forest in to one.

– end loop

B

C D

A

6

7

2

56 E
6 1

8

E D C B A

COP 3530: Graphs – Part 6 Page 55 © Mark Llewellyn

Baruvka’s Algorithm
• Like Kruskal’s Algorithm, Baruvka’s algorithm grows

many “clouds” at once.

• Each iteration of the while-loop halves the number of
connected components in T.
– The running time is O(m log n).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than n-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T

COP 3530: Graphs – Part 6 Page 56 © Mark Llewellyn

Baruvka’s MST Algorithm - Example

E

D
F

B

C

A

1

1 2

2

6

5
7

9

A: edges a-c = 7, a-e = 9

select edge a-c, since c not in tree

B: edges b-c = 5, b-f = 6

select edge b-c, since c not in tree

C: edges c-a = 7, c-b = 5, c-d = 1, c-f = 2
can’t select c-a since a is in tree
can’t select c-b since b is in tree
select c-d since d not in tree

D: edges d-c = 1, d-f = 2
can’t select d-c since c is in tree
select d-f since f not in tree

E: edges e-a = 9, e-f = 1

select e-f since f not in tree

F: edges f-b = 6, f-c = 2, f-d = 2, f-e = 1

f already included in the tree E

D
F

B

C

A

COP 3530: Graphs – Part 6 Page 57 © Mark Llewellyn

Baruvka’s MST Algorithm – Example 2

E

D

F

B

C

A

1

1

2

1

1

G

1

1

4

5 H I

J

K

2

1

1

1

COP 3530: Graphs – Part 6 Page 58 © Mark Llewellyn

Baruvka’s MST Algorithm – Example 2

E

D

F

B

C

A

1

1

2

1

G

1

H I

J

K

2

1

1

PASS #1
A: edge a-b = 2

B: edge b-c = 1

C: edge c-d = 1

D: none

E: edge e-f = 1

F: edge f-g = 1

G: none

H: edge h-i = 2

I: edge i-j = 1

J: edge j-k = 1

K: none

COP 3530: Graphs – Part 6 Page 59 © Mark Llewellyn

Baruvka’s MST Algorithm – Example 2

E

D

F

B

C

A

1

1

2

1

G

1

H I

J

K

2

1

1

PASS #2
A: edge a-e = 4

B: none

C: none

D: none

E: none

F: none

G: none

H: edge a-h = 5

I: none

J: none

K: none

4

5

COP 3530: Graphs – Part 6 Page 60 © Mark Llewellyn

Minimum Spanning Tree – Practice Problem

Generate the minimum spanning tree for the graph shown below
using Prim’s, Kruskal’s, and Baruvka’s algorithms. (Answer on
next page.)

1 2

3 4 5

76

2

2

1

1

4

4 6

103

7

85

COP 3530: Graphs – Part 6 Page 61 © Mark Llewellyn

Minimum Spanning Tree – Practice Problem

Each of the algorithms generates the same MST. Why?

1 2

3 4 5

76

2

2

1

1

4 6

COP 3530: Graphs – Part 6 Page 62 © Mark Llewellyn

Minimum Spanning Tree – Practice Problem

Table from Prim’s algorithm.

44T7

71T6

76T5

11T4

42T3

12T2

00T1

vertex causing
change to
min weight

Minimum
weightvisitedvertex

56

1

24

3 7

