
COP 3530: Graphs – Part 3 Page 1 © Mark Llewellyn

COP 3530: Computer Science III
Summer 2005

Graphs – Part 3

School of Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790

http://www.cs.ucf.edu/courses/cop3530/summer05

COP 3530: Graphs – Part 3 Page 2 © Mark Llewellyn

Ford’s Label Correcting Shortest Path Algorithm
• One of the first label-correcting algorithms was developed

by Lester Ford. Ford’s algorithm is more powerful than
Dijkstra’s in that it can handle graphs with negative
weights (but it cannot handle graphs with negative weight
cycles).

• To impose a certain ordering on monitoring the edges, an
alphabetically ordered sequence of edges is commonly
used so that the algorithm can repeatedly go through the
entire sequence and adjust the current distance of any
vertex if it is needed.

• The graph shown on slide 4 contains negatively weighted
edges but no negative weight cycles.

COP 3530: Graphs – Part 3 Page 3 © Mark Llewellyn

Ford’s Label Correcting Shortest Path Algorithm
(cont.)

• As with Dijkstra’s algorithm, Ford’s shortest path algorithm also uses a
table via dynamic programming to solve shortest path problems.

• We’ll run through an example like we did with Dijkstra’s algorithm so
that you can get the feel for how this algorithm operates.

• We’ll examine the table at each iteration of Ford’s algorithm as the
while loop updates the current distances (one iteration is one pass
through the edge set).

• Note that a vertex can change its current distance during the same
iteration. However, at the end, each vertex of the graph can be reached
through the shortest path from the starting vertex.

• The example assumes that the initial vertex was vertex c.

COP 3530: Graphs – Part 3 Page 4 © Mark Llewellyn

Graph to Illustrate Ford’s Shortest Path Algorithm

Graph for Ford’s Shortest Path Algorithm Example

a

d

h

b

ec f

g

i

4 4

2

1

1 1

1

1

1

−1

−1

−5

COP 3530: Graphs – Part 3 Page 5 © Mark Llewellyn

Ford’s Label Setting Algorithm

Ford (weighted simple digraph, vertex first)

for all vertices v

currDist(v) = ∞;

currDist(first) = 0;

while there is an edge (vu) such that

[currDist(u) > currDist(v) + weight(edge(vu))]

currDist(u) = currDist(v) + weight(edge(vu));

COP 3530: Graphs – Part 3 Page 6 © Mark Llewellyn

Ford’s Label Correcting Shortest Path Algorithm
(cont.)

• Notice that Ford’s algorithm does not specify the order in which the
edges are checked. In the example, we will use the simple, but very
brute force technique, of simply checking the adjacency list for every
vertex during every iteration. This is not necessary and can be done
much more efficiently, but clarity suffers and we are concerned about the
technique at this point.

• Therefore, in the example the edges have been ordered alphabetically
based upon the vertex letter. So, the edges are examined in the order of
ab, be, cd, cg, ch, da, de, di, ef, gd, hg, if. Ford’s algorithm proceeds in
much the same way that Dijkstra’s algorithm operates, however,
termination occurs not when all vertices have been removed from a set
but rather when no more changes (based upon the edge weights) can be
made to any currDist() value.

• The next several slides illustrate the operation of Ford’s algorithm for
the negatively weighted digraph on slide 4.

COP 3530: Graphs – Part 3 Page 7 © Mark Llewellyn

Initial Table for Ford’s Algorithm
• Initially the currDist(v) for every vertex in the graph

is set to ∞.

• Next the currDist(start) is set to 0, where start is the
initial node for the path.

– In this example start = vertex c.

• Edge ordering is: ab, be, cd, cg, ch, da, de, di, ef, gd, hg,
if.

• The initial table is shown on the next slide.

COP 3530: Graphs – Part 3 Page 8 © Mark Llewellyn

Initial Table for Ford’s Shortest Path Algorithm
iteration →
vertices ↓

initial 1

a

b

c

d

e

f

g

h

i

∞

∞

0

∞

∞

∞

∞

∞

∞

COP 3530: Graphs – Part 3 Page 9 © Mark Llewellyn

First Iteration of Ford’s Algorithm

• Since the edge set is ordered alphabetically and we are assuming that
the start vertex is c, then the first iteration of the while loop in the
algorithm will ignore the first two edges (ab) and (be).

• The first past will set the currDist() value for all single edge paths (at
least), the second pass will set all the values for two-edge paths, and so
on.

• In this example graph the longest path is of length four so only four
iterations will be required to determine the shortest path from vertex c
to all other vertices.

• The table on slide 11 shows the status after the first iteration
completes. Notice that the path from c to d is reset (as are the paths
from c to f and c to g) since a path of two edges has less weight than
the first path of one edge. This is illustrated in the un-numbered (un-
labeled) column.

COP 3530: Graphs – Part 3 Page 10 © Mark Llewellyn

First Iteration of Ford’s Algorithm (cont.)

• With the start vertex set as C, the first iteration sets the following:
– edge(ab) sets nothing
– edge(be) sets nothing
– edge(cd) sets currDist(d) = 1
– edge(cg) sets currDist(g) = 1
– edge(ch) sets currDist(h) = 1
– edge(da) sets currDist(a) = 3 since currDist(d) + weight(edge(da)) = 1+ 2 = 3
– edge(de) sets currDist(e) = 5 since currDist(d) + weight(edge(de)) = 1+ 4 = 5
– edge(di) sets currDist(i) = 2 since currDist(d) + weight(edge(di)) = 1+ 1 = 2
– edge(ef) sets currDist(f) = 9 since currDist(e) + weight(edge(ef)) = 5+ 4 = 9
– edge(gd) resets currDist(d) = 0 since currDist(d)+ weight(edge(gd)) = 1+ (-1) = 0
– edge(hg) resets currDist(g) = 0 since currDist(g)+ weight(edge(hg)) = 1+ (-1) = 0

– edge(if) resets currDist(f) = 3 since currDist(i) + weight(edge(if)) = 2+ 1 = 3

COP 3530: Graphs – Part 3 Page 11 © Mark Llewellyn

Table After First Iteration
iteration →
vertices ↓

initial 1

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

currDist(d) is initially
set at 1 since edge
(cd) is considered
first.

Subsequently, when
considering edge
(gd) the currDist(d)
can be reduced due
to a negative weight
edge and currDist(d)
becomes 0.

COP 3530: Graphs – Part 3 Page 12 © Mark Llewellyn

First Iteration of Ford’s Algorithm (cont.)

• Notice that after the first iteration the distance from vertex
c to every other vertex, except b has been determined.

– This is because of the order in which we ordered the edges. This
means that the second pass will possibly set the distance to vertex
b but the distance to all other vertices can only be reset if a new
path with less weight is encountered.

COP 3530: Graphs – Part 3 Page 13 © Mark Llewellyn

Second Iteration of Ford’s Algorithm

• The second iteration (second pass through edge set) sets the following:
– edge(ab) sets currDist(b)= 4 since currDist(a) + weight(edge(ab)) = 3+ 1 = 4

– edge(be) resets currDist(e)= -1 since currDist(b)+weight(edge(be)) = 4 +(-5) = -1

– edge(cd) no change currDist(d) = 0

– edge(cg) no change currDist(g)= 0

– edge(ch) no change currDist(h) = 1

– edge(da) resets currDist(a) = 2 since currDist(d) + weight(edge(da)) = 0+ 2 = 2

– edge(de) no change currDist(e)= -1

– edge(di) resets currDist(i) = 1 since currDist(d) + weight(edge(di)) = 0 + 1 = 1

– edge(ef) no change currDist(f) = 3

– edge(gd) resets currDist(d)= -1 since currDist(d)+ weight(edge(gd))= 0+ (-1) = -1

– edge(hg) no change currDist(g) = 0

– edge(if) resets currDist(f) = 2 since currDist(i) + weight(edge(if)) = 1+ 1 = 2

COP 3530: Graphs – Part 3 Page 14 © Mark Llewellyn

Table After 2nd Iteration
iteration →
vertices ↓

initial 1 2

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

2

4

−1

−1

2

1

COP 3530: Graphs – Part 3 Page 15 © Mark Llewellyn

Third Iteration of Ford’s Algorithm

• The third iteration makes the following updates to the table:
– edge(ab) resets currDist(b)= 3 since currDist(a) + weight(edge(ab)) = 2+ 1 = 3

– edge(be) resets currDist(e)= -2 since currDist(b)+weight(edge(be)) = 3 +(-5) = -2

– edge(cd) no change currDist(d) = -1

– edge(cg) no change currDist(g)= 0

– edge(ch) no change currDist(h) = 1

– edge(da) resets currDist(a) = 1 since currDist(d) + weight(edge(da))= (-1)+ 2 = 1

– edge(de) no change currDist(e)= -2

– edge(di) resets currDist(i) = 0 since currDist(d) + weight(edge(di)) = -1 + 1 = 0

– edge(ef) resets currDist(f) = 2 since currDist(e) + weight(edge(ef)) = -2 + 4 = 2

– edge(gd) no change currDist(d)= -1

– edge(hg) no change currDist(g) = 0

– edge(if) resets currDist(f) = 1 since currDist(i) + weight(edge(if)) = 0+ 1 = 1

COP 3530: Graphs – Part 3 Page 16 © Mark Llewellyn

Table After 3rd Iteration
iteration →
vertices ↓

initial 1 2 3

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

2

4

−1

−1

2

1

1

3

−2

1

0

COP 3530: Graphs – Part 3 Page 17 © Mark Llewellyn

Fourth Iteration of Ford’s Algorithm

• The fourth iteration makes the following updates to the table:
– edge(ab) resets currDist(b)= 2 since currDist(a) + weight(edge(ab)) = 1+ 1 = 2

– edge(be) resets currDist(e)= -3 since currDist(b)+weight(edge(be)) = 2 +(-5) = -3

– edge(cd) no change currDist(d) = -1

– edge(cg) no change currDist(g)= 0

– edge(ch) no change currDist(h) = 1

– edge(da) no change currDist(a) = 1

– edge(de) no change currDist(e)= -3

– edge(di) no change currDist(i) = 0

– edge(ef) no change currDist(f) = 1

– edge(gd) no change currDist(d)= -1

– edge(hg) no change currDist(g) = 0

– edge(if) no change currDist(f) = 1

COP 3530: Graphs – Part 3 Page 18 © Mark Llewellyn

Table After 4th Iteration
iteration →
vertices ↓

initial 1 2 3 4

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

2

4

−1

−1

2

1

1

3

−2

1

0

2

−3

COP 3530: Graphs – Part 3 Page 19 © Mark Llewellyn

Fourth Iteration of Ford’s Algorithm
• A fifth and final iteration is needed (its not shown in the table) which upon

ending will terminate the algorithm as no changes will be made to the table on
the fifth iteration. Since the fourth iteration reset only the currDist() for
vertices b and e, the only possible changes that could be made to the table
during the fifth iteration would be to those same vertices again since these two
did not affect the distance to any other vertex during the previous iteration.
The fifth and final iteration is shown below:

• edge(ab) no change currDist(b)= 2 edge(be) no change currDist(e)= -3

• edge(cd) no change currDist(d) = -1 edge(cg) no change currDist(g)= 0

• edge(ch) no change currDist(h) = 1 edge(da) no change currDist(a) = 1

• edge(de) no change currDist(e)= -3 edge(di) no change currDist(i) = 0

• edge(ef) no change currDist(f) = 1 edge(gd) no change currDist(d)= -1

• edge(hg) no change currDist(g) = 0 edge(if) no change currDist(f) = 1

COP 3530: Graphs – Part 3 Page 20 © Mark Llewellyn

Comments on Ford’s Shortest Path Algorithm

• As you can see having stepped through the execution
of Ford’s algorithm, the run-time is dependent on the
size of the edge set.

• Ford’s algorithm works best if the graph is sparse and
less well if the graph is relatively dense.

COP 3530: Graphs – Part 3 Page 21 © Mark Llewellyn

Graph: Example
• A vertex represents an airport and stores the three-

letter airport code
• An edge represents a flight route between two

airports and stores the mileage of the route

ORD PVD

MCO
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

950
1120

1233

337

2555

142

COP 3530: Graphs – Part 3 Page 22 © Mark Llewellyn

Edge List
• The edge list structure simply stores the vertices and the edges

into two containers (ex: lists, vectors etc..)
• each edge object has references to the vertices it connects.

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 41 1 TW 45UA 120AA 49 AA 903AA 1387 E

V

Finding the edges incident on a given vertex is inefficient since
it requires examining the entire edge sequence. Time: O(m)

Easy to implement.

Space = O(n+m)

COP 3530: Graphs – Part 3 Page 23 © Mark Llewellyn

Adjacency List (traditional)
• adjacency list of a vertex v:

sequence of vertices adjacent to v
• represent the graph by the adjacency lists of all the vertices

a b

c

d e

Space =
Θ (n + Σ deg(v)) = Θ(n + m)

b

b

c

c

c

d

a e

a d e

a e

d

b

a

c

d

e

COP 3530: Graphs – Part 3 Page 24 © Mark Llewellyn

Adjacency List (modern)
• The adjacency list structure extends the edge list structure by

adding incidence containers to each vertex.

space is
O(n + m).

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 41 1

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 41 1

UA 120

DL 335

UA 877 TW 45

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 41 1 TW 45UA 120AA 49 AA 903AA 1387 E

V

COP 3530: Graphs – Part 3 Page 25 © Mark Llewellyn

Performance of the Adjacency List Structure

O(deg(v))removeVertex(v)

O(1)insertVertex, insertEdge, insertDirectedEdge, removeEdge,
makeUndirected, reverseDirection, insertVertex, insertEdge,
insertDirectedEdge, removeEdge, makeUndirected, reverseDirection,

O(min(deg(u),
deg(v)))

areAdjacent(u, v)

O(deg(v))incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v),
adjacentVertices(v), inAdjacentVertices(v), outAdjacentVertices(v)

O(1)endVertices, opposite, origin, destination, isDirected, degree,
inDegree, outDegree

O(n+m)elements, positions
O(m)edges, directedEdges, undirectedEdges
O(n)vertices
O(1)numVertices, numEdges
O(1)size, isEmpty, replaceElement, swap

COP 3530: Graphs – Part 3 Page 26 © Mark Llewellyn

Adjacency Matrix (traditional)

• matrix M with entries for all pairs of vertices
• M[i,j] = true means that there is an edge (i,j) in the graph.
• M[i,j] = false means that there is no edge (i,j) in the graph.
• There is an entry for every possible edge, therefore:

Space = Θ(n2)

d

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

e

a b c d e
a
b
c
d
e

d

COP 3530: Graphs – Part 3 Page 27 © Mark Llewellyn

Adjacency Matrix (modern)

• The adjacency matrix
structures augments the
edge list structure with a
matrix where each row
and column corresponds
to a vertex.

COP 3530: Graphs – Part 3 Page 28 © Mark Llewellyn

Graph Traversal

• A procedure for exploring a graph by
examining all of its vertices and edges.

• Two different techniques:

– Depth First traversal (DFT)

– Breadth First Traversal (BFT)

COP 3530: Graphs – Part 3 Page 29 © Mark Llewellyn

• Depth-first search (DFS) is a general technique
for traversing a graph

• A DFS traversal of a graph G

– Visits all the vertices and edges of G

– Determines whether G is connected

– Computes the connected components of G

– Computes a spanning forest of G

Depth-First Search

COP 3530: Graphs – Part 3 Page 30 © Mark Llewellyn

DB

A

C

E

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

COP 3530: Graphs – Part 3 Page 31 © Mark Llewellyn

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

COP 3530: Graphs – Part 3 Page 32 © Mark Llewellyn

DFS Algorithm
• The algorithm uses a mechanism

for setting and getting “labels”
of vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G in

the connected component of v as
discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and back edges
for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

COP 3530: Graphs – Part 3 Page 33 © Mark Llewellyn

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in the
connected component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected component
of v

DB

A

C

E

COP 3530: Graphs – Part 3 Page 34 © Mark Llewellyn

Analysis of DFS

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice
– once as UNEXPLORED

– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED

– once as DISCOVERY or BACK

• DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

COP 3530: Graphs – Part 3 Page 35 © Mark Llewellyn

Depth-First Search

• DFS on a graph with n vertices and m edges takes
O(n + m) time

• DFS can be further extended to solve other graph
problems

– Find and report a path between two given vertices

– Find a cycle in the graph

COP 3530: Graphs – Part 3 Page 36 © Mark Llewellyn

Review: Representation

a b

c

d e

Space =
Θ (n + Σ deg(v)) = Θ(n + m)

a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 37 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 38 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 39 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 40 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 41 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 42 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 43 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 44 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 45 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 46 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 47 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 48 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 49 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 50 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 51 © Mark Llewellyn

Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe

COP 3530: Graphs – Part 3 Page 52 © Mark Llewellyn

Breadth-First Search

CB

A

E

D

L0

L1

F

L2

COP 3530: Graphs – Part 3 Page 53 © Mark Llewellyn

Example

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

F

COP 3530: Graphs – Part 3 Page 54 © Mark Llewellyn

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

COP 3530: Graphs – Part 3 Page 55 © Mark Llewellyn

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

COP 3530: Graphs – Part 3 Page 56 © Mark Llewellyn

BFS Algorithm
• The algorithm uses a

mechanism for setting and
getting “labels” of vertices and
edges

Algorithm BFS(G, s)
L ← new empty queue
L.enqueue(s)
setLabel(s, VISITED)
while ¬L.isEmpty()

v ← L.dequeue()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
L.enqueue(w)

else
setLabel(e, CROSS)

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

COP 3530: Graphs – Part 3 Page 57 © Mark Llewellyn

Properties

Notation
Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices
and edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree
Ts of Gs

CB

A

E

D

F

CB

A

E

D

F

COP 3530: Graphs – Part 3 Page 58 © Mark Llewellyn

Analysis
• Setting/getting a vertex/edge label takes O(1) time
• Each vertex is labeled twice

– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or CROSS

• Each vertex is inserted once into a queue L
• Method incidentEdges is called once for each vertex
• BFS runs in O(n + m) time provided the graph is represented by

the adjacency list structure

COP 3530: Graphs – Part 3 Page 59 © Mark Llewellyn

Applications

• We can specialize the BFS traversal of a graph G
to solve the following problems in O(n + m) time

– Compute the connected components of G

– Compute a spanning forest of G

– Find a simple cycle in G, or report that G is a forest

– Given two vertices of G, find a path in G between them
with the minimum number of edges, or report that no
such path exists

COP 3530: Graphs – Part 3 Page 60 © Mark Llewellyn

DFS vs. BFS

Back edge (v,w)
– w is an ancestor of v in the

tree of discovery edges

Cross edge (v,w)
– w is in the same level as v or in

the next level in the tree of
discovery edges

CB

A

E

D

F

CB

A

E

D

F

DFS BFS

COP 3530: Graphs – Part 3 Page 61 © Mark Llewellyn

DFS vs. BFS (cont.)

CB

A

E

D

F

DFS

CB

A

E

D

L0

L1

F
L2

BFS

√Biconnected components

√Shortest paths

√√
Spanning forest, connected
components, paths, cycles

BFSDFSApplications

COP 3530: Graphs – Part 3 Page 62 © Mark Llewellyn

Path Finding

• We call DFS(G, u) with u as the start vertex

• We use a stack S to keep track of the path
between the start vertex and the current vertex

• As soon as destination vertex v is encountered,
we return the path as the contents of the stack

COP 3530: Graphs – Part 3 Page 63 © Mark Llewellyn

Path Finding
Algorithm pathDFS(G, v, z)

setLabel(v, VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)

COP 3530: Graphs – Part 3 Page 64 © Mark Llewellyn

Cycle Finding

• We use a stack S to keep track of the path
between the start vertex and the current vertex

• As soon as a back edge (v, w) is encountered,
we return the cycle as the portion of the stack
from the top to vertex w

COP 3530: Graphs – Part 3 Page 65 © Mark Llewellyn

Cycle Finding
Algorithm cycleDFS(G, v, z)

setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

COP 3530: Graphs – Part 3 Page 66 © Mark Llewellyn

Digraphs

• A digraph is a graph
whose edges are all
directed
– Short for “directed graph”

• Applications
– one-way streets

– flights

– task scheduling
A

C

E

B

D

COP 3530: Graphs – Part 3 Page 67 © Mark Llewellyn

Digraph Properties

• A graph G=(V,E) such that

– Each edge goes in one direction:

• Edge (a,b) goes from a to b, but not b to a.

• If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of in-edges
and out-edges in time proportional to their size.

A

C

E

B

D

COP 3530: Graphs – Part 3 Page 68 © Mark Llewellyn

DAGs and Topological Ordering
• A directed acyclic graph

(DAG) is a digraph that has
no directed cycles

• A topological ordering of a
digraph is a numbering

v1 , …, vn

of the vertices such that for
every edge (vi , vj), we have i
< j

• A digraph admits a
topological ordering if and
only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

COP 3530: Graphs – Part 3 Page 69 © Mark Llewellyn

COP 4710
(Database Sys.)

COT 4210
(Discrete II)

COP 4020
(Prog. Langs.)

COT 3960

COP 4600
(Operating Sys.)

CEN 5016
(Software Eng.)

CDA 4150
(Comp. Arch.)

COP
3502
(CS1)

COP
3503
(CS2)

COP
3530
(CS3)

COP 3330
(OOP & UML)

COP 3223
(C – Progmng)

COP 3402
(Systems SW)

COT 3100
(Discrete I)

CDA 3103
(Comp. Org.)

COP 4232
(Software Syst.
Develop.)

Recommended Pre-req
Prereq

MAC 2312
(Calc II)

Java

Foundation
Exam

C

C

Java

Java
C++
Ada

C++SQL

C

COT 4810
(Topics in CS)

Computer Science Pre-requisite Graph
• edge (a,b) means task a must be completed before b can be started

COP 3530: Graphs – Part 3 Page 70 © Mark Llewellyn

Topological Sorting
• Number vertices, so that (u,v) in E implies u < v

COT 4210
(Discrete II)

COP 4020
(Prog. Langs.)

COT 3960

COP 4710
(Database Sys.)

COP 4600
(Operating Sys.)

CEN 5016
(Software Eng.)

CDA 4150
(Comp. Arch.)

COP
3502
(CS1)

COP
3503
(CS2)

COP
3530
(CS3)

COP 3330
(OOP & UML)

COP 3223
(C – Progmng)

COP 3402
(Systems SW)

COT 3100
(Discrete I)

CDA 3103
(Comp. Org.)

COP 4232
(Software Syst.
Develop.)

Recommended Pre-req
Prereq

MAC 2312
(Calc II)

Java

Foundation
Exam

C

C

Java

Java
C++
Ada

C++SQL

C

COT 4810
(Topics in CS)

1

2

3

4 5

6 7
8

9
10 11

12 13 14 15 16 17 18

COP 3530: Graphs – Part 3 Page 71 © Mark Llewellyn

Topological Sorting Example

0
0

1 3
2

2

3
1

1

Graph with # of Incident edges
for each vertex.

COP 3530: Graphs – Part 3 Page 72 © Mark Llewellyn

Topological Sorting Example

10
0

1 3
2

2

3
1

1

COP 3530: Graphs – Part 3 Page 73 © Mark Llewellyn

Topological Sorting Example

1
0

1 2
1

2

3
1

1

COP 3530: Graphs – Part 3 Page 74 © Mark Llewellyn

Topological Sorting Example

2 1
0

1 2
1

2

3
1

1

COP 3530: Graphs – Part 3 Page 75 © Mark Llewellyn

Topological Sorting Example

2 1

0 1
1

2

3
1

1

COP 3530: Graphs – Part 3 Page 76 © Mark Llewellyn

Topological Sorting Example

2 1

30 1
1

2

3
1

1

COP 3530: Graphs – Part 3 Page 77 © Mark Llewellyn

Topological Sorting Example

2 1

3 0
1

2

3
0

0

COP 3530: Graphs – Part 3 Page 78 © Mark Llewellyn

Topological Sorting Example

2

4

1

3 0
1

2

3
0

0

COP 3530: Graphs – Part 3 Page 79 © Mark Llewellyn

Topological Sorting Example

2

4

1

3

0

2

3
0

0

COP 3530: Graphs – Part 3 Page 80 © Mark Llewellyn

Topological Sorting Example

2

4

5

1

3

0

2

3
0

0

COP 3530: Graphs – Part 3 Page 81 © Mark Llewellyn

Topological Sorting Example

2

4

5

1

3

1

2
0

0

COP 3530: Graphs – Part 3 Page 82 © Mark Llewellyn

Topological Sorting Example

2

4

56

1

3

1

2
0

0

COP 3530: Graphs – Part 3 Page 83 © Mark Llewellyn

Topological Sorting Example

2

7

4

56

1

3

0

2
0

COP 3530: Graphs – Part 3 Page 84 © Mark Llewellyn

Topological Sorting Example

2

7

4

56

1

3

1
0

COP 3530: Graphs – Part 3 Page 85 © Mark Llewellyn

Topological Sorting Example

2

7

4

8

56

1

3

1
0

COP 3530: Graphs – Part 3 Page 86 © Mark Llewellyn

Topological Sorting Example

2

7

4

8

56

1

3

0

COP 3530: Graphs – Part 3 Page 87 © Mark Llewellyn

Topological Sorting Example

2

7

4

8

56

1

3

9

COP 3530: Graphs – Part 3 Page 88 © Mark Llewellyn

Algorithm for Topological Sorting
Algorithm TopologicalSort(G)

Let S be an empty stack
for each vertex u of G do

set its in_counter
if in_counter = 0 then

Push u in S
i ←1
while S is not empty do

Pop v from S
Label v ← i
i ← i + 1
for every w adjacent to v do

reduce the in_counter of w by 1
if in_counter = 0 then

Push w in S
if (i < # of vertices)

“Diagraph has a directed cycle”

Run Time: O(n+m)

Space use: O(n)

