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Ford’s Label Correcting Shortest Path Algorithm
• One of the first label-correcting algorithms was developed 

by Lester Ford.  Ford’s algorithm is more powerful than 
Dijkstra’s in that it can handle graphs with negative 
weights (but it cannot handle graphs with negative weight 
cycles).

• To impose a certain ordering on monitoring the edges, an 
alphabetically ordered sequence of edges is commonly 
used so that the algorithm can repeatedly go through the 
entire sequence and adjust the current distance of any 
vertex if it is needed.

• The graph shown on slide 4 contains negatively weighted 
edges but no negative weight cycles.  
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Ford’s Label Correcting Shortest Path Algorithm
(cont.)

• As with Dijkstra’s algorithm, Ford’s shortest path algorithm also uses a 
table via dynamic programming to solve shortest path problems.

• We’ll run through an example like we did with Dijkstra’s algorithm so 
that you can get the feel for how this algorithm operates.  

• We’ll examine the table at each iteration of Ford’s algorithm as the 
while loop updates the current distances (one iteration is one pass 
through the edge set).

• Note that a vertex can change its current distance during the same 
iteration.  However, at the end, each vertex of the graph can be reached 
through the shortest path from the starting vertex.

• The example assumes that the initial vertex was vertex c.
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Graph to Illustrate Ford’s Shortest Path Algorithm

Graph for Ford’s Shortest Path Algorithm Example
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Ford’s Label Setting Algorithm

Ford (weighted simple digraph, vertex first)

for all vertices v

currDist(v) = ∞;

currDist(first) = 0;

while there is an edge (vu) such that

[currDist(u) > currDist(v) + weight( edge(vu))]

currDist(u) = currDist(v) + weight(edge(vu));
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Ford’s Label Correcting Shortest Path Algorithm
(cont.)

• Notice that Ford’s algorithm does not specify the order in which the 
edges are checked.  In the example, we will use the simple, but very 
brute force technique, of simply checking the adjacency list for every 
vertex during every iteration.  This is not necessary and can be done 
much more efficiently, but clarity suffers and we are concerned about the 
technique at this point.

• Therefore, in the example the edges have been ordered alphabetically 
based upon the vertex letter.  So, the edges are examined in the order of 
ab, be, cd, cg, ch, da, de, di, ef, gd, hg, if.  Ford’s algorithm proceeds in 
much the same way that Dijkstra’s algorithm operates, however, 
termination occurs not when all vertices have been removed from a set 
but rather when no more changes (based upon the edge weights) can be 
made to any currDist( ) value.

• The next several slides illustrate the operation of Ford’s algorithm for  
the negatively weighted digraph on slide 4.
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Initial Table for Ford’s Algorithm
• Initially the currDist(v) for every vertex in the graph 

is set to ∞.

• Next the currDist(start) is set to 0, where start is the 
initial node for the path.

– In this example start = vertex c.  

• Edge ordering is: ab, be, cd, cg, ch, da, de, di, ef, gd, hg, 
if.

• The initial table is shown on the next slide.
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Initial Table for Ford’s Shortest Path Algorithm
iteration  →
vertices ↓

initial 1

a

b

c

d

e

f

g

h

i

∞

∞

0

∞

∞

∞

∞

∞

∞
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First Iteration of Ford’s Algorithm

• Since the edge set is ordered alphabetically and we are assuming that 
the start vertex is c, then the first iteration of the while loop in the 
algorithm will ignore the first two edges (ab) and (be).

• The first past will set the currDist( ) value for all single edge paths (at 
least), the second pass will set all the values for two-edge paths, and so 
on.

• In this example graph the longest path is of length four so only four 
iterations will be required to determine the shortest path from vertex c 
to all other vertices.

• The table on slide 11 shows the status after the first iteration
completes.  Notice that the path from c to d is reset (as are the paths 
from c to f and c to g) since a path of two edges has less weight than 
the first path of one edge.  This is illustrated in the un-numbered (un-
labeled) column.  
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First Iteration of Ford’s Algorithm (cont.)

• With the start vertex set as C, the first iteration sets the following:
– edge(ab) sets nothing
– edge(be) sets nothing
– edge(cd) sets currDist(d) = 1
– edge(cg) sets currDist(g) = 1
– edge(ch) sets currDist(h) = 1
– edge(da) sets currDist(a) = 3 since currDist(d) + weight(edge(da)) = 1+ 2 = 3
– edge(de) sets currDist(e) = 5 since currDist(d) + weight(edge(de)) = 1+ 4 = 5
– edge(di) sets currDist(i) = 2 since currDist(d) + weight(edge(di)) = 1+ 1 = 2
– edge(ef) sets currDist(f) = 9 since currDist(e) + weight(edge(ef)) = 5+ 4 = 9
– edge(gd) resets currDist(d) = 0 since currDist(d)+ weight(edge(gd)) = 1+ (-1) = 0
– edge(hg) resets currDist(g) = 0 since currDist(g)+ weight(edge(hg)) = 1+ (-1) = 0

– edge(if) resets currDist(f) = 3 since currDist(i) + weight(edge(if)) = 2+ 1 = 3 
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Table After First Iteration
iteration  →
vertices ↓

initial 1

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

currDist(d) is initially 
set at 1 since edge 
(cd) is considered 
first.

Subsequently, when 
considering edge 
(gd) the currDist(d) 
can be reduced due 
to a negative weight 
edge and currDist(d) 
becomes 0.
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First Iteration of Ford’s Algorithm (cont.)

• Notice that after the first iteration the distance from vertex 
c to every other vertex, except b has been determined.

– This is because of the order in which we ordered the edges.  This 
means that the second pass will possibly set the distance to vertex 
b but the distance to all other vertices can only be reset if a new 
path with less weight is encountered.
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Second Iteration of Ford’s Algorithm

• The second iteration (second pass through edge set) sets the following:
– edge(ab) sets currDist(b)= 4 since currDist(a) + weight(edge(ab)) = 3+ 1 = 4

– edge(be) resets currDist(e)= -1 since currDist(b)+weight(edge(be)) = 4 +(-5) = -1

– edge(cd) no change currDist(d) = 0

– edge(cg) no change currDist(g)= 0 

– edge(ch) no change currDist(h) = 1

– edge(da) resets currDist(a) = 2 since currDist(d) + weight(edge(da)) = 0+ 2 = 2

– edge(de) no change currDist(e)= -1

– edge(di) resets currDist(i) = 1 since currDist(d) + weight(edge(di)) = 0 + 1 = 1

– edge(ef) no change currDist(f) = 3

– edge(gd) resets currDist(d)= -1 since currDist(d)+ weight(edge(gd))= 0+ (-1) = -1

– edge(hg) no change currDist(g) = 0

– edge(if) resets currDist(f) = 2 since currDist(i) + weight(edge(if)) = 1+ 1 = 2 



COP 3530: Graphs – Part 3 Page 14 © Mark Llewellyn

Table After 2nd Iteration
iteration  →
vertices ↓

initial 1 2

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

2

4

−1

−1

2

1
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Third Iteration of Ford’s Algorithm

• The third iteration makes the following updates to the table:
– edge(ab) resets currDist(b)= 3 since currDist(a) + weight(edge(ab)) = 2+ 1 = 3

– edge(be) resets currDist(e)= -2 since currDist(b)+weight(edge(be)) = 3 +(-5) = -2

– edge(cd) no change currDist(d) = -1

– edge(cg) no change currDist(g)= 0 

– edge(ch) no change currDist(h) = 1

– edge(da) resets currDist(a) = 1 since currDist(d) + weight(edge(da))= (-1)+ 2 = 1

– edge(de) no change currDist(e)= -2 

– edge(di) resets currDist(i) = 0 since currDist(d) + weight(edge(di)) = -1 + 1 = 0

– edge(ef) resets currDist(f) = 2 since currDist(e) + weight(edge(ef)) = -2 + 4 = 2

– edge(gd) no change currDist(d)= -1 

– edge(hg) no change currDist(g) = 0

– edge(if) resets currDist(f) = 1 since currDist(i) + weight(edge(if)) = 0+ 1 = 1 
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Table After 3rd Iteration
iteration  →
vertices ↓

initial 1 2 3

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

2

4

−1

−1

2

1

1

3

−2

1

0
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Fourth Iteration of Ford’s Algorithm

• The fourth iteration makes the following updates to the table:
– edge(ab) resets currDist(b)= 2 since currDist(a) + weight(edge(ab)) = 1+ 1 = 2

– edge(be) resets currDist(e)= -3 since currDist(b)+weight(edge(be)) = 2 +(-5) = -3

– edge(cd) no change currDist(d) = -1

– edge(cg) no change currDist(g)= 0 

– edge(ch) no change currDist(h) = 1

– edge(da) no change currDist(a) = 1

– edge(de) no change currDist(e)= -3 

– edge(di) no change currDist(i) = 0

– edge(ef) no change currDist(f) = 1

– edge(gd) no change currDist(d)= -1 

– edge(hg) no change currDist(g) = 0

– edge(if) no change currDist(f) = 1
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Table After 4th Iteration
iteration  →
vertices ↓

initial 1 2 3 4

A

B

C

D

E

F

G

H

I

∞

∞

0

∞

∞

∞

∞

∞

∞

3

∞

1

5

9

1

1

2

3

∞

0

5

3

0

2

2

4

−1

−1

2

1

1

3

−2

1

0

2

−3
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Fourth Iteration of Ford’s Algorithm
• A fifth and final iteration is needed (its not shown in the table) which upon 

ending will terminate the algorithm as no changes will be made to the table on 
the fifth iteration.  Since the fourth iteration reset only the currDist( ) for 
vertices b and e, the only possible changes that could be made to the table 
during the fifth iteration would be to those same vertices again since these two 
did not affect the distance to any other vertex during the previous iteration.  
The fifth and final iteration is shown below:

• edge(ab) no change currDist(b)= 2   edge(be) no change currDist(e)= -3

• edge(cd) no change currDist(d) = -1 edge(cg) no change currDist(g)= 0 

• edge(ch) no change currDist(h) = 1 edge(da) no change currDist(a) = 1

• edge(de) no change currDist(e)= -3 edge(di) no change currDist(i) = 0

• edge(ef) no change currDist(f) = 1 edge(gd) no change currDist(d)= -1 

• edge(hg) no change currDist(g) = 0 edge(if) no change currDist(f) = 1
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Comments on Ford’s Shortest Path Algorithm

• As you can see having stepped through the execution 
of Ford’s algorithm, the run-time is dependent on the 
size of the edge set.  

• Ford’s algorithm works best if the graph is sparse and 
less well if the graph is relatively dense.
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Graph: Example
• A vertex represents an airport and stores the three-

letter airport code
• An edge represents a flight route between two 

airports and stores the mileage of the route

ORD PVD

MCO
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

950
1120

1233

337

2555

142
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Edge List
• The edge list structure simply stores the vertices and the edges 

into two containers (ex: lists, vectors etc..)
• each edge object has references to the vertices it connects.

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 41 1 TW 45UA 120AA 49 AA 903AA 1387 E

V

Finding the edges incident on a given vertex is inefficient since 
it requires examining the entire edge sequence. Time: O(m)

Easy to implement.

Space = O(n+m)
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Adjacency List (traditional)
• adjacency list of a vertex v:

sequence of vertices adjacent to v
• represent the graph by the adjacency lists of all the vertices

a b

c

d e

Space =
Θ (n + Σ deg(v)) = Θ(n + m)

b

b

c

c

c

d

a e

a d e

a e

d

b

a

c

d

e
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Adjacency List (modern)
• The adjacency list structure extends the edge list structure by 

adding incidence containers to each vertex.

space is 
O(n + m).

in out in out in out in out in out in out in out

NW 35

DL 247

AA 49

AA 41 1

UA 120 AA1387

AA 523

UA 877

DL335

AA 49

NW 35 AA1387

AA 903

TW 45

DL 247

AA 903

AA523

AA 41 1

UA 120

DL 335

UA 877 TW 45

DFWBOS ORDMIA SFOJFKLAX

DL 247 DL 335 UA 877NW 35 AA 523 AA 41 1 TW 45UA 120AA 49 AA 903AA 1387 E

V
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Performance of the Adjacency List Structure

O(deg(v))removeVertex(v)

O(1)insertVertex, insertEdge, insertDirectedEdge, removeEdge, 
makeUndirected, reverseDirection, insertVertex, insertEdge, 
insertDirectedEdge, removeEdge, makeUndirected, reverseDirection,

O(min(deg(u),
deg(v)))

areAdjacent(u, v)

O(deg(v))incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v), 
adjacentVertices(v), inAdjacentVertices(v), outAdjacentVertices(v) 

O(1)endVertices, opposite, origin, destination, isDirected, degree, 
inDegree, outDegree

O(n+m)elements, positions
O(m)edges, directedEdges, undirectedEdges
O(n)vertices
O(1)numVertices, numEdges
O(1)size, isEmpty, replaceElement, swap
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Adjacency Matrix (traditional)

• matrix M with entries for all pairs of vertices
• M[i,j] = true means that there is an edge (i,j) in the graph.
• M[i,j] = false means that there is no edge (i,j) in the graph.
• There is an entry for every possible edge, therefore:

Space = Θ(n2)

d

F T T T F
T F F F T
T F F T T
T F T F T
F T T T F

a b

c

e

a b c d e
a
b
c
d
e

d
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Adjacency Matrix (modern)

• The adjacency matrix 
structures augments the 
edge list structure with a 
matrix where each row 
and column corresponds 
to a vertex.
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Graph Traversal

• A procedure for exploring a graph by 
examining all of its vertices and edges.

• Two different techniques:

– Depth First traversal (DFT)

– Breadth First Traversal (BFT)
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• Depth-first search (DFS) is a general technique 
for traversing a graph

• A DFS traversal of a graph G 

– Visits all the vertices and edges of G

– Determines whether G is connected

– Computes the connected components of G

– Computes a spanning forest of G

Depth-First Search
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DB

A

C

E

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E
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DFS Algorithm
• The algorithm uses a mechanism 

for setting and getting “labels”
of vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G in  

the connected component of v as 
discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and back edges
for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
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Properties of DFS

Property 1
DFS(G, v) visits all the 
vertices and edges in the 
connected component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected component 
of v

DB

A

C

E
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Analysis of DFS

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice 
– once as UNEXPLORED

– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED

– once as DISCOVERY or BACK

• DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure
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Depth-First Search

• DFS on a graph with n vertices and m edges takes 
O(n + m ) time

• DFS can be further extended to solve other graph 
problems

– Find and report a path between two given vertices

– Find a cycle in the graph
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Review: Representation

a b

c

d e

Space =
Θ (n + Σ deg(v)) = Θ(n + m)

a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
pc-e

pa-d
pc-d
pd-e

pb-e
pc-e
pd-e

a-b
pa | pb

a-c
pa | pc

a-d
pa | pd

b-e
pb | pe

c-d
pc | pd

c-e
pc | pe

d-e
pd | pe
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Review: DFS

a b

c

d e a b c d e

pa-b
pa-c
pa-d

pa-b
pb-e

pa-c
pc-d
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Review: DFS
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Breadth-First Search
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Example

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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Example (cont.)
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BFS Algorithm
• The algorithm uses a 

mechanism for setting and 
getting “labels” of vertices and 
edges

Algorithm BFS(G, s)
L ← new empty queue
L.enqueue(s)
setLabel(s, VISITED)
while ¬L.isEmpty()

v ← L.dequeue() 
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
L.enqueue(w)

else
setLabel(e, CROSS)

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
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Properties

Notation
Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices 
and edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree 
Ts of Gs
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Analysis
• Setting/getting a vertex/edge label takes O(1) time
• Each vertex is labeled twice 

– once as UNEXPLORED
– once as VISITED

• Each edge is labeled twice
– once as UNEXPLORED
– once as DISCOVERY or CROSS

• Each vertex is inserted once into a queue L
• Method incidentEdges is called once for each vertex
• BFS runs in O(n + m) time provided the graph is represented by 

the adjacency list structure
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Applications

• We can specialize the BFS traversal of a graph G
to solve the following problems in O(n + m) time

– Compute the connected components of G

– Compute a spanning forest of G

– Find a simple cycle in G, or report that G is a forest

– Given two vertices of G, find a path in G between them 
with the minimum number of edges, or report that no 
such path exists
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DFS vs. BFS

Back edge (v,w)
– w is an ancestor of v in the 

tree of discovery edges

Cross edge (v,w)
– w is in the same level as v or in 

the next level in the tree of 
discovery edges
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DFS BFS
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DFS vs. BFS (cont.)

CB

A

E

D

F

DFS
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√Biconnected components

√Shortest paths
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BFSDFSApplications
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Path Finding

• We call DFS(G, u) with u as the start vertex

• We use a stack S to keep track of the path 
between the start vertex and the current vertex

• As soon as destination vertex v is encountered, 
we return the path as the contents of the stack 
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Path Finding
Algorithm pathDFS(G, v, z)

setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
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Cycle Finding

• We use a stack S to keep track of the path 
between the start vertex and the current vertex

• As soon as a back edge (v, w) is encountered, 
we return the cycle as the portion of the stack 
from the top to vertex w
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Cycle Finding
Algorithm cycleDFS(G, v, z)

setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)
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Digraphs

• A digraph is a graph 
whose edges are all 
directed
– Short for “directed graph”

• Applications
– one-way streets

– flights

– task scheduling
A

C

E

B

D
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Digraph Properties

• A graph G=(V,E) such that

– Each edge goes in one direction:

• Edge (a,b) goes from a to b, but not b to a.

• If we keep in-edges and out-edges in separate 
adjacency lists, we can perform listing of in-edges 
and out-edges in time proportional to their size.

A

C

E

B

D
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DAGs and Topological Ordering
• A directed acyclic graph 

(DAG) is a digraph that has 
no directed cycles

• A topological ordering of a 
digraph is a numbering 

v1 , …, vn

of the vertices such that for 
every edge (vi , vj), we have i 
< j

• A digraph admits a 
topological ordering if and 
only if it is a DAG

B

A

D

C

E

DAG G

B

A

D
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E

Topological 
ordering of G
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v2

v3

v4 v5
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Topological Sorting
• Number vertices, so that (u,v) in E implies u < v
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Topological Sorting Example
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Topological Sorting Example

10
0

1 3
2

2

3
1

1



COP 3530: Graphs – Part 3 Page 73 © Mark Llewellyn

Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Algorithm for Topological Sorting
Algorithm TopologicalSort(G)

Let S be an empty stack
for each vertex u of G do

set its in_counter
if in_counter = 0 then

Push u in S
i ←1
while S is not empty do

Pop v from S
Label v ← i
i ← i + 1
for every w adjacent to v do

reduce the in_counter of w by 1 
if in_counter = 0 then

Push w in S
if (i < # of vertices)

“Diagraph has a directed cycle”

Run Time: O(n+m)

Space use: O(n)


