COP 3530: Computer Science ll|
Summer 2005

Graphs — Part 2

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790

http://www.cs.ucf.edu/courses/cop3530/summer05

School of Computer Science
University of Central Florida

COP 3530: Graphs — Part 2 Page 1 © Mark Llewellyn




Shortest Path Problems

In the shortest path problem, the edges of the graph are assigned
certain weights. The meaning of the weights will vary from
application to application, but common representations are:
distance between two cities indicated by the vertices, cost of
transmission across this link, amounts of some substance moved
across the network., etc.

 When determining the shortest path from vertex v to vertex u,

Information about the distances between intermediate vertices w
must be recorded. This information can be recorded as a label
assocliated with these vertices, where the label is only the
distance from v to w or the distance along with the predecessor
of w In this path.

The methods of finding the shortest path rely on these labels.
Depending upon how many times these labels are updated, the
methods solving the shortest path problem are divided into two
classes: label-setting algorithms and label-correcting algorithms.

COP 3530: Graphs — Part 2 Page 2 © Mark Llewellyn

”
SV,




Shortest Path Problems (cont)

e For label-setting algorithms, in each pass through the
vertices still to be processed, one vertex Is set to a
value which remains unchanged to the end of the
execution.

— This, however, limits such methods to processing graphs
with only positive weights.

e The label-correcting algorithms will allow for the
changing of any label during the execution of the
algorithm.

« Most of the label-setting and label-correcting
algorithms can be subsumed to the same form which
will allow finding the shortest path from one vertex to
all other vertices in the graph.

COP 3530: Graphs — Part 2 Page 3 © Mark Llewellyn




Dijkstra’s Label Setting Algorithm

Dijkstra was one of the first to develop a label-setting algorithm
for finding the shortest path in a graph.

In this algorithm (shown on the next slide) a number of paths p,,
P,, ..., P, from a vertex v are tried, and each time, the shortest
path among them is tried, which may mean that the same path p.
can be continued by adding one more edge to it.

— If p, turns out to be longer than any other path that can be tried, p,
Is abandoned and this other path is tried by resuming from where it
was left and by adding one more edge to it.

Since paths can lead to vertices with more than one outgoing
edge, new paths for possible exploration are added for each
outgoing edge. Each vertex is tried once, all paths leading from
It are opened, and the vertex itself is put away and not used
anymore. After all vertices are visited, the algorithm terminates.

COP 3530: Graphs — Part 2 Page 4 © Mark Llewellyn

:
S
SV,




Dijkstra’s Label Setting Algorithm

Dijkstra (weighted simple digraph, vertex first)
for all vertices v
currDist(v) = oo;
currDist(first) = 0;
tobeChecked = all vertices;
while tobeChecked is not empty
v = a vertex in tobeChecked with minimal currDist(v);
remove Vv from tobeChecked;
for all vertices u adjacent to v and in tobeChecked
If currDist(u) > currDist(v) + weight(edge(vu))
currDist(u) = currDist(v) + weight(edge(vu));
predecessor(u) = v;

COP 3530: Graphs — Part 2 Page 5 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

/ & i
; .

Graph for Djjkstra’s Shortest Path Algorithm Example

COP 3530: Graphs — Part 2 Page 6 © Mark Llewellyn




Initial Table for Dijkstra’s Algorithm

Initially the currDist(v) for every vertex in the graph is set to .

Next the currDist(start) is set to 0, where start is the initial node
for the path. In this example start = vertex D. The set
tobeChecked is initialize to contain every vertex in the graph.
Since start = D and currDist(D)= 0 this vertex will have the
minimum currDist( ) value and thus vertex D will be the first
vertex removed from the set tobeChecked.

In the sequence of tables shown on the following slides, the set
tobeChecked Is iIndicated by the leftmost column with the
current members of the set indicated by shading the cells for
current members in light blue.

After this initialization stage the table will look like the one on
the next slide.

COP 3530: Graphs — Part 2 Page 7 © Mark Llewellyn

’
r
S




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 ) 6 7 8 9 10
active¢vertex

A 00

B 00

C 00

D 0

E 00

F 00

G 00

H 00

I 00

J 00

COP 3530: Graphs — Part 2

Page 8

© Mark Llewellyn




First Iteration of Dijkstra’s Algorithm

o The first iteration of the algorithm will remove the vertex
with the minimum currDist( ) which will be vertex D and
then set the currDist( ) for every vertex which is both
adjacent to D and in tobeChecked.

 In this case, only vertices A and H are both adjacent to D
and in tobeChecked.

— The value of currDist(A) = currDist(D) + weight(edge(DA)) =0 +
4 =4,

— The value of currDist(H) = currDist(D) + weight(edge(DH)) = 0
+1=1.

o After the first iteration the table will look like the table
shown In the next slide:

COP 3530: Graphs — Part 2 Page 9 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 ) 6 7 8 9 10
active¢vertex D

A 00 4

B 00 o0

C 00 '

D 0

E 00 o0

F 00 o0

G 00 '

H 00 1

I 00 o0

J 00 00

COP 3530: Graphs — Part 2

Page 10

© Mark Llewellyn




Second lteration of Dijkstra’s Algorithm

Notice that when a vertex iIs removed from the set tobeChecked
It Is no longer participating in setting the values in the table so
Its row IS unused after its removal from the set.

The second iteration will again selected the minimum value of
currDist( ) from the vertices in tobeChecked. In this case the
vertex with this minimum value is vertex H since currDist(H) =
1 and currDist(A) = 4. So vertex H is removed from the set
tobeChecked and the active vertex is set to H. Vertices which
are both adjacent to H and in tobeChecked are vertices E and I.

— The value of currDist(E) = currDist(H) + weight(edge(HE)) =1 + 5 = 6.
— The value of currDist(l) = currDist(H) + weight(edge(HI)) =1 + 9 = 10.

After the second iteration the table looks like the one in the next
slide.

COP 3530: Graphs — Part 2 Page 11 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 ) 6 7 8 9 10
active¢vertex D H

A 00 4 4

B 00 00 o0

C o0 00 '

D 0

E 00 ' 6

F 00 00 o0

G o0 00 '

H 00 1

I 00 00 10

J 00 o0 00

COP 3530: Graphs — Part 2

Page 12

© Mark Llewellyn




Third and Fourth lterations

The third iteration will select vertex A as it has the minimum
weight for all of the vertices in tobeChecked( ). So the next
active vertex becomes vertex A. See slide 14.

Notice in the third iteration with active vertex A, the only vertex
adjacent to A which has not been visited previously is vertex E.
The value of currDist(E) Is set to 5 during this iteration. See
slide 15.

The fourth iteration (see slide 15) will select vertex E to be the
active vertex and remove it from the set tobeChecked. The only
vertex adjacent to vertex E which has not yet been visited Is
vertex F.

COP 3530: Graphs — Part 2 Page 13 © Mark Llewellyn

‘r




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 ) 6 7 8 9 10
active¢vertex D H A

A 00 4 4

B 00 00 00 o0

C o0 00 00 '

D 0

E 00 00 6 )

F 00 00 00 o0

G o0 00 o0 '

H 00 1

I 00 00 10 10

J 00 o0 o0 00

COP 3530: Graphs — Part 2

Page 14

© Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E

A 00 4 4

B 00 ' 00 00 o0

C 00 00 00 00 00

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00

H 00 1

I 00 00 10 10 10

J 00 00 o' 00 00

COP 3530: Graphs — Part 2 Page 15 © Mark Llewellyn




Fifth lteration

e The fifth iteration will select vertex F with minimum
value of 8.

e The fifth 1teration 1s shown in the next slide.

COP 3530: Graphs — Part 2 Page 16 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E =

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15

H 00 1

I 00 00 10 10 10 9

J 00 00 o' 00 00 00

COP 3530: Graphs — Part 2 Page 17 © Mark Llewellyn




Sixth Iteration

The sixth iteration will find two vertices with equal values as the
minimum currDist( ) (both vertex B and | have values of 9).

Which vertex Is selected as the active vertex In this case IS
arbitrary.

In this example, Vertex B has been selected as the next active
vertex.

Only vertex C is adjacent to vertex B and unvisited. Only the
currDist(c) will change during the sixth iteration.

Upon completion of the sixth iteration the only unvisited
vertices are C, G, I, and J.

The sixth iteration i1s shown in the next slide.

COP 3530: Graphs — Part 2 Page 18 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E = B

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15 15

H 00 1

I 00 00 10 10 10 9 9

J 00 00 o' 00 00 00

COP 3530: Graphs — Part 2 Page 19 © Mark Llewellyn




Seventh and Eighth Iterations

The seventh iteration will select vertex | as the active vertex.
Only vertex J Is adjacent to vertex I.

Iteration seven is illustrated in slide 21.

The eighth iteration will select vertex C or vertex J arbitrarily,
for this example vertex C has been selected.

The eighth iteration is shown in slide 22.

Notice In the eighth iteration that vertex C has no adjacent
vertices and thus no values in the table are set, however, vertex
C 1s removed from the set tobeChecked.

»
COP 3530: Graphs — Part 2 Page 20 © Mark Llewellyn §;




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E = B

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15 15

H 00 1

I 00 00 10 10 10 9 9

J 00 00 o' 00 00 00

COP 3530: Graphs — Part 2 Page 21 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E = B I

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11 11 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15 15 15

H 00 1

I 00 00 10 10 10 9 9

J 00 00 00 00 00 00 11

COP 3530: Graphs — Part 2 Page 22 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E = B I

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11 11 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15 15 15

H 00 1

I 00 00 10 10 10 9 9

J 00 00 00 00 00 00 00 11

COP 3530: Graphs — Part 2 Page 23 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E = B I c

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11 11 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15 15 15 15

H 00 1

I 00 00 10 10 10 9 9

J 00 00 00 00 00 00 00 11 11

COP 3530: Graphs — Part 2 Page 24 © Mark Llewellyn




Ninth lteration

The ninth iteration will select vertex J as the active vertex. Only
vertex G is both adjacent to vertex J and unvisited (i.e., still in
the set tobeChecked).

The ninth iteration is illustrated in slide 26.

COP 3530: Graphs — Part 2 Page 25 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E = B I c J

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11 11 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15 15 15 15 12

H 00 1

I 00 00 10 10 10 9 9

J 00 00 00 00 00 00 00 11 11

COP 3530: Graphs — Part 2 Page 26 © Mark Llewellyn




Tenth and Final lteration

The tenth and final iteration (there are only ten vertices in the
original graph) serves only to remove the vertex G from the set
tobeChecked.

The final table 1s exactly the same as the previous table expect
that the set tobeChecked is now empty and thus the algorithm
will terminate.

The final iteration is shown in the next slide.

COP 3530: Graphs — Part 2 Page 27 © Mark Llewellyn




Dijkstra’s Shortest Path Algorithm

iteration — initial 1 2 3 4 5 6 7 8 9 10
activeivertex D H A E = B I c J G

A 00 4 4

B 00 00 00 00 00 9

C 00 00 00 00 00 11 11 11

D 0

E 00 00 6 5

F 00 00 00 00 8

G 00 00 00 00 00 15 15 15 15 12

H 00 1

I 00 00 10 10 10 9 9

J 00 00 00 00 00 00 00 11 11

COP 3530: Graphs — Part 2 Page 28 © Mark Llewellyn




Reading the Solution to Dijkstra’s Shortest
Path Example

The results of Dijkstra’s Shortest Path algorithm applied to
our example are embedded in the table.

The highlighted cells for each vertex represent the length of
the shortest path from the start vertex D to the vertex
Identified by each row.

Shortest Paths are:

— DtoA=4 DtoB=9 DtoC=11
— DtoE=8 DtoF=9 DtoG =12
- DtoH=1 Dtol=11 DtoJ=11

»
COP 3530: Graphs — Part 2 Page 29 © Mark Llewellyn §;




Dijkstra’s Shortest Path Algorithm

7
10 @ ’(F/
1 1
1 5
2
! ° D

Graph for Djjkstra’s Shortest Path Algorithm Example

Shortest Path from D to | identified by blue nodes

COP 3530: Graphs — Part 2 Page 30 © Mark Llewellyn




Comments on Dijkstra’s Shortest Path Algorithm

e Although Dijkstra’s algorithm is quite efficient when dealing
with graphs which contain only positive weights.

« Although many graphs contain only positive weights, it is also
possible for them to contain negative weights.

« Shortest path algorithms for graphs containing negative weights
are, in general, more robust and have less efficient execution
(higher overhead for handling the negative weights) when
dealing with graphs that contain only positive weights.

» Therefore, Dijkstra’s algorithm is very popular for positive
weighted graphs, however, Dijkstra’s algorithm iIs not general
enough, and will fail when negative weights are used in the
graph.

COP 3530: Graphs — Part 2 Page 31 © Mark Llewellyn




Comments on Dijkstra’s Shortest Path Algorithm

(cont.)

To see why, change the weight of edge(ah) from 10 to -10.

Note that the path D, A, H, E is now -1, whereas the path D, A,

E as determined by the algorithm is 5.

The reason for overlooking this less costly path is that the
vertices with the current distance set from oo to a value are not
checked anymore (remember it’s a label-setting algorithm):
First successors of vertex D are checked and D is removed from
tobeChecked, then vertex H is removed from tobeChecked, and
only afterward is the vertex A considered to be a candidate to be
Included in the path from D to other vertices. But now,
edge(AH) is not taken into consideration because the condition
In the for loop prevents the algorithm from doing so. To
overcome this limitation, a label-correcting algorithm is

required.

COP 3530: Graphs — Part 2 Page 32 © Mark Llewellyn




