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• In spite of the flexibility of trees and the many different tree
applications, trees, by their very nature, have one limitation, namely, 
they can only represent relationships of a hierarchical type, such as the 
relation between a parent and child.

• Other relationships can only be represented indirectly, such as the 
relationship of being a sibling.  In a tree there are no links between 
children of the same parent, thus the sibling relationship is determined 
only through the parent node.

• A graph, which is a generalization of a tree, does not have this 
limitation.

• Intuitively, a graph is a collection of vertices (nodes) and the 
connections (edges or arcs) between them.

• Generally, there are no restrictions imposed on the number of vertices in 
a graph nor on the number of connections one vertex can have to other 
vertices.

Graphs
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• Graphs are versatile data structures that can represent a 
large number of different situations and events from a rather 
diverse group of applications.

• Graph theory has grown into a sophisticated area of 
mathematics and computer science in the last two hundred 
years since it was first studied.

• We will look at this data structure and some of the problems 
to which it has been applied as we continue in our 
exploration of problem solving strategies of interest to 
computer science. 

• As you will see on the next few pages, there are an 
enormous number of application areas to which graphs have 
been applied.

Graphs (cont.)
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Graphs (cont.)
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• The picture on page 4 illustrates just four areas in which graphs and 
graph theory have applications ranging from simple graph traversal 
techniques to what can be very complex abstract machines known as 
FSA (finite state automata, also called FSM; finite state machines –
see…there’s that discrete stuff again!).

• In the this picture the portion labeled (a) shows how a graph can be used 
to determine the shortest distance between the airports in two different 
cities (so you can calculate your frequent flyer miles!).

• The diagram labeled (b) illustrates a graph modeling an electrical circuit 
where the vertices in the graph denote where the components are 
connected together with the edges representing the components 
themselves (e.g., resistors and capacitors).

– Using a graph you can answer questions such as “What are the mesh 
equations which describe the circuit’s behavior?”

Graphs (cont.)
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• The diagram component labeled (c) shows how a logic circuit 
can be reduced to a graph.  In this case the logic gates are 
represented by the vertices, and the arrows represent the signal
propagation from gate outputs to gate inputs.

– Using a graph such as this you can answer questions of the form:
“How long does it take for the signals to propagate from the inputs 
to the outputs?” or “Which gates are on the critical path?”

• Finally, the portion of the diagram labeled (d) represents a FSA
with the vertices representing the states of the machine and the
labeled arrows representing the allowable state transitions.  

– Given such a graph representation of the FSA questions such as: 
“Are all the states reachable?” or “Can the FSA deadlock?”

Graphs (cont.)
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• A simple graph G = (V, E) consists of a non-empty set V of 
vertices and a possibly empty set E of edges, each edge being a 
set of two vertices from V.  The number of vertices and edges is
typically denoted ⏐V⏐ and ⏐E⏐, respectively.

Some simple graph examples:

Some Graph Definitions
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• A directed graph (digraph) G = (V, E) consists of a non-empty set V of 
vertices and a possibly empty set E of edges (called arcs), where each 
edge is a pair of vertices from V.  The difference is that an arc denotes a 
direction so that the edge (Vi, Vj ) ∈ E implies that the edge may be 
traversed in the direction from vertex i to vertex j. Traversal from 
vertex j to vertex i can occur only if the edge (Vj, Vi ) ∈ E.

Some digraph examples:

Some Graph Definitions (cont.)
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• A weighted digraph is a digraph to which weights have been assigned to 
the edges.  Weights may also be applied to the edges of an undirected 
graph.  It is common to refer to a weighted digraph or weighted 
undirected graph as a network.

Examples of weighted graphs:

Some Graph Definitions (cont.)
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• The definitions for the directed graph and the weighted digraph are too 
restrictive in that they do not allow for two vertices to have more than 
one edge between them.

– This is analogous to saying that you can get from Orlando to Tampa but 
there is only one way to do it.

• More general definitions are required to ease this restriction.

• A multigraph is a graph in which two vertices can be joined by multiple 
edges.  More formally, a multigraph G = (V, E, f) is composed of a set 
of vertices V, edges E, and a function f: E → {{Vi, Vj }: Vi , Vj ∈ V & 
Vi ≠ Vj}.

• A pseudograph is a multigraph which does not have the restriction that 
an edge cannot begin and end on the same vertex.  This allows cycles to 
be introduced into the graph which involve only a single node.

Some Graph Definitions (cont.)
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Examples of Multigraphs and Pseudographs
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• In an undirected graph two vertices V1 and V2 are adjacent if the edge  
(V1, V2) ∈ E.  Such an edge is said to be incident on the vertices V1 and 
V2.

• In a directed graph the edge (V1, V2)  is incident to vertex V2 and 
incident from V1.  Being incident from is more commonly referred to as 
emanating from, thus the edge above emanates from V1 and is incident 
on V2.

• In a directed graph the out degree of a node is the number of edges 
which emanate from the node.  The in degree of a node is the number of 
edges which are incident on the node.

• In an undirected graph the degree of a vertex V is the number of edges 
incident on V.

• A path in a digraph G = (V, E) is a non-empty sequence of vertices 
P={V1, V2, …, Vk}, where Vi∈V for 1≤ i ≤ k such that (Vi, Vi+1) ∈E for 
1 ≤ i ≤ k.  The path length of P is k-1.

More Graph Definitions
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• Given a path as defined above, vertex Vi+1 is the successor of vertex Vi
for 1 ≤ i ≤ k.  Every vertex Vi of path P (except the last vertex) has a 
successor.

• Given a path as defined above, vertex Vi-1 is the predecessor of vertex 
Vi for 1 ≤ i ≤ k.  Every vertex Vi of path P (except the first vertex) has a 
predecessor.

• A path is called a simple path if and only if Vi ≠ Vj for all i and j such 
that 1 ≤ i < j ≤ k.  However, it is permissible for V1 = Vk in a simple 
path.  If V1=Vk the the path is a cycle (see below).

• A circuit is a path in which no edge is repeated.  

• A cycle is a path of non-zero length in which the starting and ending 
vertex are the same.  The length of the cycle is just the length of the 
path P.  A graph containing a cycle has an infinite number of paths in 
the graph. A simple cycle is a path that is both a cycle and simple.

• A loop is a cycle of length 1; that is, it is a path of the form {Vi, Vi}.

More Graph Definitions (cont.)



COP 3530: Graphs – Part 1 Page 14 © Mark Llewellyn

More Graph Definitions – Example
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graph G

Graph G is defined as: V = {A, B, C, D} and E = {(A,C), (A,B), (B,C), (C,A), (C,D), (D,D)}
The edge (A,C) is incident to C and emanates from A.
The out degree of node B is 1, the out degree of node C is 2.
The in degree of node C is 2, the in degree of node B is 1.
There is a path P = {A, B, C} in G.  This is a simple path of length 2.
The path P is also a circuit.
There is a path P = {A, B, C, A} in G which is a simple cycle of length 3.
The cycle {A, C, A, C, A} has length 4, but is not a simple cycle.
There is a loop in G consisting of (D, D).
The path {C, A, C, D} is not a simple path, C is repeated (but not at the end)
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• A graph of n vertices is complete, and is denoted Kn, if for each pair of 
distinct vertices there is exactly one edge connecting them.  That is, 
each vertex can be connected to any other vertex.  The number of edges 
is such a graph is O(⏐V⏐).

• An undirected graph G = (V, E) is connected iff (if and only if) there is 
a path between every pair of vertices in G.  A graph which is 
unconnected contains at least one vertex which is unreachable, i.e., the 
graph does not contain any paths which include the unreachable vertex.  

– Note that given a specific graph G = (V, E), it may be possible to remove 
edges from E while G remains connected.  An edge which can be removed 
from E and yet G remains connected is said to be unnecessary.

• A connected undirected graph that contains no cycles is called a tree.

• A graph H is a subgraph of another graph G iff its vertex and edge sets 
are subsets of those of G.

• A subgraph of G that contains all of the vertices of G and is a tree is 
called a spanning tree of G.

Even More Graph Definitions
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Even More Graph Definitions - Examples
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• A directed acyclic graph (DAG) is a directed graph which 
contains no cycles.

– All trees are DAGs, however, not all DAGs are trees.  In figure (a) 
on the next page we see a DAG which is clearly a tree (binary in
fact), yet figure (b) represents a DAG which is clearly not a tree 
(node “K” has two parents and remember that all trees in Computer 
Science are from single parent homes).

• A directed graph which is connected is called a strongly 
connected graph.  If a directed graph is not strongly connected 
but the underlying graph (its undirected counterpart) is 
connected, then the digraph is said to be weakly connected.

Yet Even More Graph Definitions!
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Yet Even More Graph Definitions – Examples
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• There are a variety of ways to represent a graph and we will examine a 
couple of these techniques with a focus on the efficient implementation 
of the graph structure.  

• Consider a directed graph G = (V, E).  Since E ⊆ V × V, graph G 
contains at most ⏐V⏐2 edges.  There are many possible sets of edges for 
a given set of vertices V.  

• Therefore, the main concern when designing a graph representation 
scheme is to find an efficient way to represent the set of edges.

• To do this properly depends upon whether the graph is a dense graph or 
a sparse graph.  Informally, a graph with relatively few edges is a sparse 
graph while a graph with many edges is a dense graph.  More formally 
we have:

• A sparse graph is a graph G = (V, E) in which ⏐E⏐= O(⏐V⏐).

– For example, consider a graph G = (V,E) with n nodes.  Suppose that the 
out-degree of each vertex in G is some fixed constant k.  Graph G is a 
sparse graph because ⏐E⏐= k⏐V⏐ = O(⏐V⏐).

Graph Representations
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• A dense graph is a graph G = (V, E) in which ⏐E⏐ = θ(⏐V⏐2).  For 
example, consider a graph G = (V,E) with n nodes.  Suppose that the 
out-degree of each vertex in G is some fraction f of n, 0 < f ≤ 1.  For 
example, if n = 16 and f =  0.25, the out-degree of each node is 4.  
Graph G is a dense graph because ⏐E⏐= f⏐V⏐2 = θ(⏐V⏐2).

• For sparse graphs a simple representation technique is given by an 
adjacency list which specifies all vertices which are adjacent to each 
vertex in the graph.  This list is can be implemented as a table (static 
implementation) in which case it is referred to as a star representation or 
as a linked list (the more common case).  It can also be implemented as 
a matrix (a two-dimensional table) in which case it comes in two 
possible forms: an adjacency matrix or an incidence matrix.

Graph Representations (cont.)



COP 3530: Graphs – Part 1 Page 21 © Mark Llewellyn

• An adjacency matrix, A, of graph G = (V, E) is a binary 
matrix: ⏐V⏐× ⏐V⏐such that each entry of the matrix is:

• An incidence matrix, A, of graph G = (V, E) is a binary 
matrix: V⏐× ⏐E⏐such that each entry of the matrix is:

Graph Representations (cont.)
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Adjacency Lists
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Adjacency Matrix

C
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F
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G

a graph A 0 0 1 1
B 0 0 0 1
C 1 0 0 0
D 1 1 0 0
E 0 1 0 1
F 1 0 1 1
G 0 0 0 0

adjacency matrix

0 1 0
1 0 0
0 1 0
1 1 0
0 0 0
0 0 0
0 0 0

A B C D E F G

1 row/vertex

1 column/vertex

A value of 1 in a cell 
indicates that there is 
an edge between the 
row vertex and the 
column vertex.

A value of 0 in a cell 
indicates that there is 
no edge between the 
row vertex and the 
column vertex.
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Incidence Matrix
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a graph

A value of 1 in a cell 
indicates that the row 
vertex is connected 
to the column edge.

A value of 0 in a cell 
indicates that the row 
vertex is not 
connected to the 
edge.

A 1 1 1 0
B 0 0 0 1
C 1 0 0 0
D 0 1 0 1
E 0 0 0 0
F 0 0 1 0
G 0 0 0 0

incident matrix

0 0 0
1 0 0
0 1 0
0 0 1
1 0 1
0 1 0
0 0 0

AC AD AF BD BE CF DE

1 row/vertex

1 column/edge

DF
0
0
0
1
0
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