
COP 3530: Graphs – Part 1 Page 1 © Mark Llewellyn

COP 3530: Computer Science III
Summer 2005

Introduction to Graphs – Part 1

School of Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790

http://www.cs.ucf.edu/courses/cop3530/summer05

COP 3530: Graphs – Part 1 Page 2 © Mark Llewellyn

• In spite of the flexibility of trees and the many different tree
applications, trees, by their very nature, have one limitation, namely,
they can only represent relationships of a hierarchical type, such as the
relation between a parent and child.

• Other relationships can only be represented indirectly, such as the
relationship of being a sibling. In a tree there are no links between
children of the same parent, thus the sibling relationship is determined
only through the parent node.

• A graph, which is a generalization of a tree, does not have this
limitation.

• Intuitively, a graph is a collection of vertices (nodes) and the
connections (edges or arcs) between them.

• Generally, there are no restrictions imposed on the number of vertices in
a graph nor on the number of connections one vertex can have to other
vertices.

Graphs

COP 3530: Graphs – Part 1 Page 3 © Mark Llewellyn

• Graphs are versatile data structures that can represent a
large number of different situations and events from a rather
diverse group of applications.

• Graph theory has grown into a sophisticated area of
mathematics and computer science in the last two hundred
years since it was first studied.

• We will look at this data structure and some of the problems
to which it has been applied as we continue in our
exploration of problem solving strategies of interest to
computer science.

• As you will see on the next few pages, there are an
enormous number of application areas to which graphs have
been applied.

Graphs (cont.)

COP 3530: Graphs – Part 1 Page 4 © Mark Llewellyn

Graphs (cont.)

COP 3530: Graphs – Part 1 Page 5 © Mark Llewellyn

• The picture on page 4 illustrates just four areas in which graphs and
graph theory have applications ranging from simple graph traversal
techniques to what can be very complex abstract machines known as
FSA (finite state automata, also called FSM; finite state machines –
see…there’s that discrete stuff again!).

• In the this picture the portion labeled (a) shows how a graph can be used
to determine the shortest distance between the airports in two different
cities (so you can calculate your frequent flyer miles!).

• The diagram labeled (b) illustrates a graph modeling an electrical circuit
where the vertices in the graph denote where the components are
connected together with the edges representing the components
themselves (e.g., resistors and capacitors).

– Using a graph you can answer questions such as “What are the mesh
equations which describe the circuit’s behavior?”

Graphs (cont.)

COP 3530: Graphs – Part 1 Page 6 © Mark Llewellyn

• The diagram component labeled (c) shows how a logic circuit
can be reduced to a graph. In this case the logic gates are
represented by the vertices, and the arrows represent the signal
propagation from gate outputs to gate inputs.

– Using a graph such as this you can answer questions of the form:
“How long does it take for the signals to propagate from the inputs
to the outputs?” or “Which gates are on the critical path?”

• Finally, the portion of the diagram labeled (d) represents a FSA
with the vertices representing the states of the machine and the
labeled arrows representing the allowable state transitions.

– Given such a graph representation of the FSA questions such as:
“Are all the states reachable?” or “Can the FSA deadlock?”

Graphs (cont.)

COP 3530: Graphs – Part 1 Page 7 © Mark Llewellyn

• A simple graph G = (V, E) consists of a non-empty set V of
vertices and a possibly empty set E of edges, each edge being a
set of two vertices from V. The number of vertices and edges is
typically denoted ⏐V⏐ and ⏐E⏐, respectively.

Some simple graph examples:

Some Graph Definitions

A

B C
A

B

C

D

E

COP 3530: Graphs – Part 1 Page 8 © Mark Llewellyn

• A directed graph (digraph) G = (V, E) consists of a non-empty set V of
vertices and a possibly empty set E of edges (called arcs), where each
edge is a pair of vertices from V. The difference is that an arc denotes a
direction so that the edge (Vi, Vj) ∈ E implies that the edge may be
traversed in the direction from vertex i to vertex j. Traversal from
vertex j to vertex i can occur only if the edge (Vj, Vi) ∈ E.

Some digraph examples:

Some Graph Definitions (cont.)

A

B

C

D

E

E

C

D

B

A
F

COP 3530: Graphs – Part 1 Page 9 © Mark Llewellyn

• A weighted digraph is a digraph to which weights have been assigned to
the edges. Weights may also be applied to the edges of an undirected
graph. It is common to refer to a weighted digraph or weighted
undirected graph as a network.

Examples of weighted graphs:

Some Graph Definitions (cont.)

E

C

D

B

A
F

−14

−8−10

6

11

8

10

3

weighted digraph

A

B

C

D

E

7

10

3 5 8

6

weighted graph

COP 3530: Graphs – Part 1 Page 10 © Mark Llewellyn

• The definitions for the directed graph and the weighted digraph are too
restrictive in that they do not allow for two vertices to have more than
one edge between them.

– This is analogous to saying that you can get from Orlando to Tampa but
there is only one way to do it.

• More general definitions are required to ease this restriction.

• A multigraph is a graph in which two vertices can be joined by multiple
edges. More formally, a multigraph G = (V, E, f) is composed of a set
of vertices V, edges E, and a function f: E → {{Vi, Vj }: Vi , Vj ∈ V &
Vi ≠ Vj}.

• A pseudograph is a multigraph which does not have the restriction that
an edge cannot begin and end on the same vertex. This allows cycles to
be introduced into the graph which involve only a single node.

Some Graph Definitions (cont.)

COP 3530: Graphs – Part 1 Page 11 © Mark Llewellyn

Examples of Multigraphs and Pseudographs

A

B

C

D

E

undirected pseudograph

E

C

D

B

A
F

−14

−8−10

6

11

8

10

3

weighted multigraph

86

7

G

3 6

COP 3530: Graphs – Part 1 Page 12 © Mark Llewellyn

• In an undirected graph two vertices V1 and V2 are adjacent if the edge
(V1, V2) ∈ E. Such an edge is said to be incident on the vertices V1 and
V2.

• In a directed graph the edge (V1, V2) is incident to vertex V2 and
incident from V1. Being incident from is more commonly referred to as
emanating from, thus the edge above emanates from V1 and is incident
on V2.

• In a directed graph the out degree of a node is the number of edges
which emanate from the node. The in degree of a node is the number of
edges which are incident on the node.

• In an undirected graph the degree of a vertex V is the number of edges
incident on V.

• A path in a digraph G = (V, E) is a non-empty sequence of vertices
P={V1, V2, …, Vk}, where Vi∈V for 1≤ i ≤ k such that (Vi, Vi+1) ∈E for
1 ≤ i ≤ k. The path length of P is k-1.

More Graph Definitions

COP 3530: Graphs – Part 1 Page 13 © Mark Llewellyn

• Given a path as defined above, vertex Vi+1 is the successor of vertex Vi
for 1 ≤ i ≤ k. Every vertex Vi of path P (except the last vertex) has a
successor.

• Given a path as defined above, vertex Vi-1 is the predecessor of vertex
Vi for 1 ≤ i ≤ k. Every vertex Vi of path P (except the first vertex) has a
predecessor.

• A path is called a simple path if and only if Vi ≠ Vj for all i and j such
that 1 ≤ i < j ≤ k. However, it is permissible for V1 = Vk in a simple
path. If V1=Vk the the path is a cycle (see below).

• A circuit is a path in which no edge is repeated.

• A cycle is a path of non-zero length in which the starting and ending
vertex are the same. The length of the cycle is just the length of the
path P. A graph containing a cycle has an infinite number of paths in
the graph. A simple cycle is a path that is both a cycle and simple.

• A loop is a cycle of length 1; that is, it is a path of the form {Vi, Vi}.

More Graph Definitions (cont.)

COP 3530: Graphs – Part 1 Page 14 © Mark Llewellyn

More Graph Definitions – Example

A

C

B

D

graph G

Graph G is defined as: V = {A, B, C, D} and E = {(A,C), (A,B), (B,C), (C,A), (C,D), (D,D)}
The edge (A,C) is incident to C and emanates from A.
The out degree of node B is 1, the out degree of node C is 2.
The in degree of node C is 2, the in degree of node B is 1.
There is a path P = {A, B, C} in G. This is a simple path of length 2.
The path P is also a circuit.
There is a path P = {A, B, C, A} in G which is a simple cycle of length 3.
The cycle {A, C, A, C, A} has length 4, but is not a simple cycle.
There is a loop in G consisting of (D, D).
The path {C, A, C, D} is not a simple path, C is repeated (but not at the end)

COP 3530: Graphs – Part 1 Page 15 © Mark Llewellyn

• A graph of n vertices is complete, and is denoted Kn, if for each pair of
distinct vertices there is exactly one edge connecting them. That is,
each vertex can be connected to any other vertex. The number of edges
is such a graph is O(⏐V⏐).

• An undirected graph G = (V, E) is connected iff (if and only if) there is
a path between every pair of vertices in G. A graph which is
unconnected contains at least one vertex which is unreachable, i.e., the
graph does not contain any paths which include the unreachable vertex.

– Note that given a specific graph G = (V, E), it may be possible to remove
edges from E while G remains connected. An edge which can be removed
from E and yet G remains connected is said to be unnecessary.

• A connected undirected graph that contains no cycles is called a tree.

• A graph H is a subgraph of another graph G iff its vertex and edge sets
are subsets of those of G.

• A subgraph of G that contains all of the vertices of G and is a tree is
called a spanning tree of G.

Even More Graph Definitions

COP 3530: Graphs – Part 1 Page 16 © Mark Llewellyn

Even More Graph Definitions - Examples
31

2

complete graph

4

31

2

complete digraph

4

3

1

2

connected graph

4

unnecessary
edges

1

2 3

4

5

6 7unconnected
graph

1

2 3

4

1

2 3

4

1

2 3

4

3 possible spanning trees for the connected graph shown on the right

COP 3530: Graphs – Part 1 Page 17 © Mark Llewellyn

• A directed acyclic graph (DAG) is a directed graph which
contains no cycles.

– All trees are DAGs, however, not all DAGs are trees. In figure (a)
on the next page we see a DAG which is clearly a tree (binary in
fact), yet figure (b) represents a DAG which is clearly not a tree
(node “K” has two parents and remember that all trees in Computer
Science are from single parent homes).

• A directed graph which is connected is called a strongly
connected graph. If a directed graph is not strongly connected
but the underlying graph (its undirected counterpart) is
connected, then the digraph is said to be weakly connected.

Yet Even More Graph Definitions!

COP 3530: Graphs – Part 1 Page 18 © Mark Llewellyn

Yet Even More Graph Definitions – Examples
A

B C

D E F G

Directed Acyclic Graph (DAG)

also a binary tree

H

I J

K

DAG but not a tree

L

M N

P
O

Not a DAG. Cycle
shown in red

COP 3530: Graphs – Part 1 Page 19 © Mark Llewellyn

• There are a variety of ways to represent a graph and we will examine a
couple of these techniques with a focus on the efficient implementation
of the graph structure.

• Consider a directed graph G = (V, E). Since E ⊆ V × V, graph G
contains at most ⏐V⏐2 edges. There are many possible sets of edges for
a given set of vertices V.

• Therefore, the main concern when designing a graph representation
scheme is to find an efficient way to represent the set of edges.

• To do this properly depends upon whether the graph is a dense graph or
a sparse graph. Informally, a graph with relatively few edges is a sparse
graph while a graph with many edges is a dense graph. More formally
we have:

• A sparse graph is a graph G = (V, E) in which ⏐E⏐= O(⏐V⏐).

– For example, consider a graph G = (V,E) with n nodes. Suppose that the
out-degree of each vertex in G is some fixed constant k. Graph G is a
sparse graph because ⏐E⏐= k⏐V⏐ = O(⏐V⏐).

Graph Representations

COP 3530: Graphs – Part 1 Page 20 © Mark Llewellyn

• A dense graph is a graph G = (V, E) in which ⏐E⏐ = θ(⏐V⏐2). For
example, consider a graph G = (V,E) with n nodes. Suppose that the
out-degree of each vertex in G is some fraction f of n, 0 < f ≤ 1. For
example, if n = 16 and f = 0.25, the out-degree of each node is 4.
Graph G is a dense graph because ⏐E⏐= f⏐V⏐2 = θ(⏐V⏐2).

• For sparse graphs a simple representation technique is given by an
adjacency list which specifies all vertices which are adjacent to each
vertex in the graph. This list is can be implemented as a table (static
implementation) in which case it is referred to as a star representation or
as a linked list (the more common case). It can also be implemented as
a matrix (a two-dimensional table) in which case it comes in two
possible forms: an adjacency matrix or an incidence matrix.

Graph Representations (cont.)

COP 3530: Graphs – Part 1 Page 21 © Mark Llewellyn

• An adjacency matrix, A, of graph G = (V, E) is a binary
matrix: ⏐V⏐× ⏐V⏐such that each entry of the matrix is:

• An incidence matrix, A, of graph G = (V, E) is a binary
matrix: V⏐× ⏐E⏐such that each entry of the matrix is:

Graph Representations (cont.)

⎩
⎨
⎧

=
otherwise0

)V,V(edgeanexiststhereif1
A ji

ij

⎩
⎨
⎧

=
otherwise0

VvertexwithincidentisEedgeif1
A ij

ij

COP 3530: Graphs – Part 1 Page 22 © Mark Llewellyn

Adjacency Lists

C

A

F

D

B

E

G

a graph

A C D F
B D E
C A F
D A B E F
E B D
F A C D
G

adjacency list as a table

A

B

C

D

E

F

G
null
null

C D F
null

D E
null

A F
null

A B E F
null

B D
null

A C D
null

adjacency list as a linked list

COP 3530: Graphs – Part 1 Page 23 © Mark Llewellyn

Adjacency Matrix

C

A

F

D

B

E

G

a graph A 0 0 1 1
B 0 0 0 1
C 1 0 0 0
D 1 1 0 0
E 0 1 0 1
F 1 0 1 1
G 0 0 0 0

adjacency matrix

0 1 0
1 0 0
0 1 0
1 1 0
0 0 0
0 0 0
0 0 0

A B C D E F G

1 row/vertex

1 column/vertex

A value of 1 in a cell
indicates that there is
an edge between the
row vertex and the
column vertex.

A value of 0 in a cell
indicates that there is
no edge between the
row vertex and the
column vertex.

COP 3530: Graphs – Part 1 Page 24 © Mark Llewellyn

Incidence Matrix

C

A

F

D

B

E

G

a graph

A value of 1 in a cell
indicates that the row
vertex is connected
to the column edge.

A value of 0 in a cell
indicates that the row
vertex is not
connected to the
edge.

A 1 1 1 0
B 0 0 0 1
C 1 0 0 0
D 0 1 0 1
E 0 0 0 0
F 0 0 1 0
G 0 0 0 0

incident matrix

0 0 0
1 0 0
0 1 0
0 0 1
1 0 1
0 1 0
0 0 0

AC AD AF BD BE CF DE

1 row/vertex

1 column/edge

DF
0
0
0
1
0
1
0

