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Pseudo-Polynomial Time Algorithms
• The running time of the algorithm for solving the 0-1 Knapsack 

problem using dynamic programming was O(nW).

• This means that the running time of the algorithm depends on a 
parameter W that, strictly speaking, is not proportional to the size of 
the input (the n items, together with their weights and benefits, plus 
the number W).  

• Assuming that W is encoded in some standard way (such as a binary 
number), then it takes only O(log W) bits to encode W.  

• If W is very large (say W = 2n), then this dynamic programming 
algorithm would actually be asymptotically slower than the brute force 
method!

• Thus, technically speaking, this algorithm is not a polynomial time 
algorithm because its running time is not actually a function of the 
size of the input.
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Pseudo-Polynomial Time Algorithms (cont.)

• It is common to refer to an algorithm such as the 0-1 
Knapsack algorithm as being a pseudo-polynomial time 
algorithm, because its running time depends on the 
magnitude of a number given in the input, not its 
encoding size.

• In practice, such algorithms should run much faster 
than any brute-force algorithm, but it is not correct to 
say they are true polynomial-time algorithms.

• In fact, the theory of NP-completeness states that it is 
very unlikely that anyone will every find a true 
polynomial-time algorithm for the 0-1 Knapsack 
problem.
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Optimal Binary Search Trees

• One of the principle applications of binary search trees 
(BSTs) is to implement a dictionary.

• A dictionary is a set of elements with the operations of 
searching, insertion, and deletion.

• If probabilities of searching for elements of a set are known 
(e.g., from accumulated data about past searches), it is 
natural to pose a question about an optimal BST for which 
the average number of comparisons in a search is the 
smallest possible.  (For simplicity, we’ll limit the discussion 
to minimizing the average number of comparisons in a 
successful search.  The method can be extended to include 
unsuccessful searches as well.)



COP3530 : Dynamic Programming (2) Page 5 Mark Llewellyn  ©

Optimal Binary Search Trees (cont.)

• As an example, let’s consider four keys A, B, C, and D to be 
searched for with probabilities 0.1, 0.2, 0.4, and 0.3, 
respectively.

• The brute force algorithm for this problem would be to generate 
all of the BSTs which contain these four keys and determine 
which tree(s) provides the lowest average number of 
comparisons in a successful search.

• How many BSTs are there for this problem?  Can you generate 
them?  How many for a general BST containing n keys?
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Finding An Optimal Binary Search Tree
• Let a1,…,an be distinct keys ordered from the smallest to the 

largest and let p1,…,pn be the probabilities of searching for them.

• Let C[i,j] be the smallest average number of comparisons 
made in a successful search in a binary tree     made up of the 
keys listed above. 

• Following the classic dynamic programming approach, we need 
to find values of C[i,j] for all smaller instances of the problem, 
although we are interested only in C[1,n].

• We now need to derive the recurrence which underlies the 
dynamic programming algorithm (i.e., the way to produce all of 
the C[i,j] terms).

• We need to consider all possible ways to choose a root ak among 
the keys a1,…,an. 

j
iT
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Finding An Optimal Binary Search Tree (cont.)

• For such a binary tree (see next page), the root contains key 
ak, the left subtree        contains keys ai,…,ak optimally 
arranges, and the right subtree     contains the keys 
ak+1,…,aj also optimally arranged.

• Notice how we are using the principle of optimality in this 
case.

• If we count the levels in the tree starting with 1 (in order to 
make the comparison numbers equal the level of the key)., 
the following recurrence relation is obtained:
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Finding An Optimal Binary Search Tree (cont.)

• Reducing the recurrence on the previous page gives us:
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Finding An Optimal Binary Search Tree (cont.)

• The recurrence on the previous page indicates that a matrix 
will be required to hold the dynamic programming solution to 
the optimal binary search tree problem.

• The recurrence indicates that the solution for C[i,j] requires 
values that will be in row i and the columns to the left of 
column j and in column j and the rows below row i. 

• In the diagram on the next page, the arrows point to the pairs 
of entries whose sums are computed in order to find the 
smallest one to be recorded as the value of C[i,j].

• This suggests that the matrix should be filled along its 
diagonals, starting with all zeros on the main diagonal and 
given probabilities pi, 1 ≤ i ≤ n, right above it and moving 
toward the upper right corner of the matrix.
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EXAMPLE - Finding An Optimal Binary Search Tree

• Let’s compute C[1,2]: 
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Dynamic Programming Algorithm Matrix For Optimal BST
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Finding An Optimal Binary Search Tree (cont.)

• The technique described computes C[1,n], which is the 
average number of comparisons for a successful searching 
the optimal binary search tree.  

• If we also would like to produce the optimal tree itself, we 
need to maintain another matrix, let’s call it R,  to record the 
value of k for which the minimum value in the recurrence is 
achieved.

• This auxiliary table has the same shape as the previous table 
and is filled in the same manner, starting with entries R[i,i] = I
for 1 ≤ i ≤ n.  When the table is filled, its entries indicate 
indices of the roots of the optimal subtrees, which makes it 
possible to  reconstruct an optimal tree for the entire set which 
is given.
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EXAMPLE - Finding An Optimal Binary Search Tree

• Let’s assume the four-key set that we used for the earlier example 
on page 5. 

• The initial tables look like the following: 
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EXAMPLE - Finding An Optimal Binary Search Tree

• Computing C[1,2] we have: 
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EXAMPLE - Finding An Optimal Binary Search Tree

• Continuing we have, C[2,3]: 
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EXAMPLE - Finding An Optimal Binary Search Tree

• Continuing we have, C[3,4]: 
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EXAMPLE - Finding An Optimal Binary Search Tree
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EXAMPLE - Finding An Optimal Binary Search Tree
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EXAMPLE - Finding An Optimal Binary Search Tree
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EXAMPLE - Finding An Optimal Binary Search Tree
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Algorithm OptimalBST(P[1..n])
//Finds optimal BST using dynamic programming

//Input: An array P[1..n] of search probabilities for a sorted list of n keys

//Output: Average number of comparisons in successful key searches in the optimal BST

//        and a table R, of the subtree roots in the optimal BST.

for i ←1 to n do
C[i, i-1] ← 0
C[i,i] ← P[i]
R[i,i] ← I
C[n+1,n] ← 0
for d ← 1 to n-1 do //diagonal count

for i ← 1 to n-d do
j ← i + d
minval ← ∞
for k ← i to j do

if C[i, k-1] + C[k+1, j] < minval
minval ← C[i, k-1] + C[k+1, j]; kmin ← k

R[i,j] ← k
sum ← P[i];  
for s ← i+1 to j do

sum ← sum + P[s]

C[i,j] ← minval + sum
return (C[1,n], R) 


