
COP3530 : Dynamic Programming (2) Page 1 Mark Llewellyn ©

COP 3530: Computer Science III
Summer 2005

Dynamic Programming – Part 2

School of Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
CSB 242, (407)823-2790

Course Webpage:
http://www.cs.ucf.edu/courses/cop3530/sum2005

COP3530 : Dynamic Programming (2) Page 2 Mark Llewellyn ©

Pseudo-Polynomial Time Algorithms
• The running time of the algorithm for solving the 0-1 Knapsack

problem using dynamic programming was O(nW).

• This means that the running time of the algorithm depends on a
parameter W that, strictly speaking, is not proportional to the size of
the input (the n items, together with their weights and benefits, plus
the number W).

• Assuming that W is encoded in some standard way (such as a binary
number), then it takes only O(log W) bits to encode W.

• If W is very large (say W = 2n), then this dynamic programming
algorithm would actually be asymptotically slower than the brute force
method!

• Thus, technically speaking, this algorithm is not a polynomial time
algorithm because its running time is not actually a function of the
size of the input.

COP3530 : Dynamic Programming (2) Page 3 Mark Llewellyn ©

Pseudo-Polynomial Time Algorithms (cont.)

• It is common to refer to an algorithm such as the 0-1
Knapsack algorithm as being a pseudo-polynomial time
algorithm, because its running time depends on the
magnitude of a number given in the input, not its
encoding size.

• In practice, such algorithms should run much faster
than any brute-force algorithm, but it is not correct to
say they are true polynomial-time algorithms.

• In fact, the theory of NP-completeness states that it is
very unlikely that anyone will every find a true
polynomial-time algorithm for the 0-1 Knapsack
problem.

COP3530 : Dynamic Programming (2) Page 4 Mark Llewellyn ©

Optimal Binary Search Trees

• One of the principle applications of binary search trees
(BSTs) is to implement a dictionary.

• A dictionary is a set of elements with the operations of
searching, insertion, and deletion.

• If probabilities of searching for elements of a set are known
(e.g., from accumulated data about past searches), it is
natural to pose a question about an optimal BST for which
the average number of comparisons in a search is the
smallest possible. (For simplicity, we’ll limit the discussion
to minimizing the average number of comparisons in a
successful search. The method can be extended to include
unsuccessful searches as well.)

COP3530 : Dynamic Programming (2) Page 5 Mark Llewellyn ©

Optimal Binary Search Trees (cont.)

• As an example, let’s consider four keys A, B, C, and D to be
searched for with probabilities 0.1, 0.2, 0.4, and 0.3,
respectively.

• The brute force algorithm for this problem would be to generate
all of the BSTs which contain these four keys and determine
which tree(s) provides the lowest average number of
comparisons in a successful search.

• How many BSTs are there for this problem? Can you generate
them? How many for a general BST containing n keys?

() () 10c,0nfor
1n

1
n
n2

nc =≥
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Catalan number: 1, 2, 5, 14,
42,132, 429,1430, 4862, ….
Named after discoverer
Eugeni Catalan in mid
1800s. Approaches ∞ as
fast as 4n/n1.5.

COP3530 : Dynamic Programming (2) Page 6 Mark Llewellyn ©

A

B

C

D

A

B

C

D

A

D

B C

A

D

C

B

A

B

D

C

B

A C

D

B

A D

C

C

A D

B

C

B

A

D

D

C

B

AD

C

A

B

D

A

B

C

D

B

CA

D

A

C

B

The 14
possible BSTs
– red tree is

optimal

COP3530 : Dynamic Programming (2) Page 7 Mark Llewellyn ©

Finding An Optimal Binary Search Tree
• Let a1,…,an be distinct keys ordered from the smallest to the

largest and let p1,…,pn be the probabilities of searching for them.

• Let C[i,j] be the smallest average number of comparisons
made in a successful search in a binary tree made up of the
keys listed above.

• Following the classic dynamic programming approach, we need
to find values of C[i,j] for all smaller instances of the problem,
although we are interested only in C[1,n].

• We now need to derive the recurrence which underlies the
dynamic programming algorithm (i.e., the way to produce all of
the C[i,j] terms).

• We need to consider all possible ways to choose a root ak among
the keys a1,…,an.

j
iT

COP3530 : Dynamic Programming (2) Page 8 Mark Llewellyn ©

Finding An Optimal Binary Search Tree (cont.)

• For such a binary tree (see next page), the root contains key
ak, the left subtree contains keys ai,…,ak optimally
arranges, and the right subtree contains the keys
ak+1,…,aj also optimally arranged.

• Notice how we are using the principle of optimality in this
case.

• If we count the levels in the tree starting with 1 (in order to
make the comparison numbers equal the level of the key).,
the following recurrence relation is obtained:

1k
iT −

j
1kT +

[] () ()1Tinaoflevelp1Tinaoflevelp1pminj,iC j
1ks

j

1ks
s

1k

is

1k
issk +×+

⎭
⎬
⎫

⎩
⎨
⎧ +×+×= +

+=

−

=

− ∑∑

COP3530 : Dynamic Programming (2) Page 9 Mark Llewellyn ©

Finding An Optimal Binary Search Tree (cont.)

• Reducing the recurrence on the previous page gives us:

[] [] []{ } nji1forpj,1kC1k,iCminj,iC
j

1ks
s ≤≤≤+++−= ∑

+=

ak

Optimal
BST for

a1,…,ak-1

Optimal
BST for

ak+1,…,aj

Tree 1k
iT − Tree j

1kT +

COP3530 : Dynamic Programming (2) Page 10 Mark Llewellyn ©

Finding An Optimal Binary Search Tree (cont.)

• The recurrence on the previous page indicates that a matrix
will be required to hold the dynamic programming solution to
the optimal binary search tree problem.

• The recurrence indicates that the solution for C[i,j] requires
values that will be in row i and the columns to the left of
column j and in column j and the rows below row i.

• In the diagram on the next page, the arrows point to the pairs
of entries whose sums are computed in order to find the
smallest one to be recorded as the value of C[i,j].

• This suggests that the matrix should be filled along its
diagonals, starting with all zeros on the main diagonal and
given probabilities pi, 1 ≤ i ≤ n, right above it and moving
toward the upper right corner of the matrix.

COP3530 : Dynamic Programming (2) Page 11 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

• Let’s compute C[1,2]:

5
4
3
2
1 0.40.10

0.20

0
0.30

0.40

43210

Main Table

5
4
3
2
1 21

2

4
3

43210

Root Table

[] []

[] []
⎪
⎪
⎩

⎪⎪
⎨

⎧

=++=++=

=++=++=
=

∑

∑

=

=

2

1s
s

2

1s
s

4.03.001.0p2,3C1,1C:2k

5.03.02.00p2,2C0,1C:1k
min]2,1[C

COP3530 : Dynamic Programming (2) Page 12 Mark Llewellyn ©

Dynamic Programming Algorithm Matrix For Optimal BST

…

0

pn

goal

n…

p2

2

0

0

n+1

…

C[i,j]i

p11

…

…

0…

j…1

COP3530 : Dynamic Programming (2) Page 13 Mark Llewellyn ©

Finding An Optimal Binary Search Tree (cont.)

• The technique described computes C[1,n], which is the
average number of comparisons for a successful searching
the optimal binary search tree.

• If we also would like to produce the optimal tree itself, we
need to maintain another matrix, let’s call it R, to record the
value of k for which the minimum value in the recurrence is
achieved.

• This auxiliary table has the same shape as the previous table
and is filled in the same manner, starting with entries R[i,i] = I
for 1 ≤ i ≤ n. When the table is filled, its entries indicate
indices of the roots of the optimal subtrees, which makes it
possible to reconstruct an optimal tree for the entire set which
is given.

COP3530 : Dynamic Programming (2) Page 14 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

• Let’s assume the four-key set that we used for the earlier example
on page 5.

• The initial tables look like the following:

0.30.40.20.1Probability

DCBAKey

5
4
3
2
1 0.10

0.20

0
0.30

0.40

43210

Main Table

5
4
3
2
1 1

2

4
3

43210

Root Table

COP3530 : Dynamic Programming (2) Page 15 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

• Computing C[1,2] we have:

5
4
3
2
1 0.40.10

0.20

0
0.30

0.40

43210

Main Table

5
4
3
2
1 21

2

4
3

43210

Root Table

[] []

[] []
⎪
⎪
⎩

⎪⎪
⎨

⎧

=++=++=

=++=++=
=

∑

∑

=

=

2

1s
s

2

1s
s

4.03.001.0p2,3C1,1C:2k

5.03.02.00p2,2C0,1C:1k
min]2,1[C

COP3530 : Dynamic Programming (2) Page 16 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

• Continuing we have, C[2,3]:

5
4
3
2
1 0.40.10

0.80.20

0
0.30

0.40

43210

Main Table

5
4
3
2
1 21

32

4
3

43210

Root Table

[] []

[] []
⎪
⎪
⎩

⎪⎪
⎨

⎧

=++=++=

=++=++=
=

∑

∑

=

=

3

1s
s

3

2s
s

8.06.002.0p3,4C2,2C:3k

0.16.04.00p3,3C1,2C:2k
min]3,2[C

COP3530 : Dynamic Programming (2) Page 17 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

• Continuing we have, C[3,4]:

5
4
3
2
1 0.40.10

0.80.20

0
0.30
1.00.40

43210

Main Table

5
4
3
2
1 21

32

4
33

43210

Root Table

[] []

[] []
⎪
⎪
⎩

⎪⎪
⎨

⎧

=++=++=

=++=++=
=

∑

∑

=

=

4

3s
s

4

3s
s

1.17.004.0p4,5C3,3C:4k

0.17.03.00p4,4C2,3C:3k
min]4,3[C

COP3530 : Dynamic Programming (2) Page 18 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

5
4
3
2
1 0.40.10

1.40.80.20

0
0.30
1.00.40

43210

Main Table

5
4
3
2
1 21

332

4
33

43210

Root Table

[] []

[] []

[] []⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=++=++=

=++=++=

=++=++=

=

∑

∑

∑

=

=

=

4

2s
s

4

2s
s

4

2s
s

7.19.008.0p4,5C3,2C:4k

4.19.03.02.0p4,4C2,2C:3k

9.19.00.10p4,3C1,2C:2k

min]4,2[C

COP3530 : Dynamic Programming (2) Page 19 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

5
4
3
2
1 1.10.40.10

1.40.80.20

0
0.30
1.00.40

43210

Main Table

5
4
3
2
1 321

332

4
33

43210

Root Table

[] []

[] []

[] []⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=++=++=

=++=++=

=++=++=

=

∑

∑

∑

=

=

=

3

1s
s

3

1s
s

3

1s
s

1.17.004.0p3,4C2,1C:3k

2.17.04.01.0p3,3C1,1C:2k

5.17.08.00p3,2C0,1C:1k

min]3,1[C

COP3530 : Dynamic Programming (2) Page 20 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

5
4
3
2
1 1.71.10.40.10

1.40.80.20

0
0.30
1.00.40

43210

Main Table

5
4
3
2
1 3321

332

4
33

43210

Root Table

[] []

[] []

[] []

[] []
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

=++=++=

=++=++=

=++=++=

=++=++=

=

∑

∑

∑

∑

=

=

=

=

4

1s
s

4

1s
s

4

1s
s

4

1s
s

1.20.101.1p4,5C3,1C:4k

7.10.13.04.0p4,4C2,1C:3k

1.20.10.11.0p4,3C1,1C:2k

4.20.14.10p4,2C0,1C:1k

min]4,1[C

COP3530 : Dynamic Programming (2) Page 21 Mark Llewellyn ©

EXAMPLE - Finding An Optimal Binary Search Tree

5
4
3
2
1 1.71.10.40.10

1.40.80.20

0
0.30
1.00.40

43210

Main Table

5
4
3
2
1 3321

332

4
33

43210

Root Table

C

B D

A See trees
on page 6

Optimal
BST

Average number of
key comparisons is

1.7.

COP3530 : Dynamic Programming (2) Page 22 Mark Llewellyn ©

Algorithm OptimalBST(P[1..n])
//Finds optimal BST using dynamic programming

//Input: An array P[1..n] of search probabilities for a sorted list of n keys

//Output: Average number of comparisons in successful key searches in the optimal BST

// and a table R, of the subtree roots in the optimal BST.

for i ←1 to n do
C[i, i-1] ← 0
C[i,i] ← P[i]
R[i,i] ← I
C[n+1,n] ← 0
for d ← 1 to n-1 do //diagonal count

for i ← 1 to n-d do
j ← i + d
minval ← ∞
for k ← i to j do

if C[i, k-1] + C[k+1, j] < minval
minval ← C[i, k-1] + C[k+1, j]; kmin ← k

R[i,j] ← k
sum ← P[i];
for s ← i+1 to j do

sum ← sum + P[s]

C[i,j] ← minval + sum
return (C[1,n], R)

