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What Is Dynamic Programming?
• Dynamic programming is an algorithm design technique with a rather 

interesting history. It was invented in 1957 by prominent U.S. 
mathematician Richard Bellman as a general method for optimizing
multistage decision processes.

– The word “programming” in the name of this technique stands for 
“planning” or “a series of choices” and does not refer to computer 
programming.  The word “dynamic” conveys the idea that the 
choices may depend on the current state, rather than being 
decided ahead of time.

• Useful analogy is a pre-programmed radio show with a set play-list as 
opposed to a call-in radio show where listeners request songs to be 
played – the call-in show is “dynamically programmed.”

• Originally a tool of applied mathematics designed for optimization 
problems, in computer science it is considered as a general algorithm 
design technique which is not limited to optimization problems.
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What Is Dynamic Programming? (cont.)

• Dynamic programming is a technique for solving 
problems with overlapping sub-problems.

• Typically, these sub-problems arise from a recurrence 
relating a solution to a given problem with solutions to its 
smaller sub-problems of the same type.

• Rather than solving overlapping sub-problems again and 
again, dynamic programming solves each of the smaller 
sub-problems only once and stores the results in a table 
from which the solution to the original problem can be 
obtained.

• One of the defining features of dynamic programming is 
that it is capable of replacing exponential-time 
computation with a polynomial-time computation.
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What Is Dynamic Programming? (cont.)

• Dynamic programming is similar to divide and conquer in 
the sense that it is based on a recursive division of a 
problem instance into smaller or simpler problem instances.

• Divide and conquer algorithms often use a top-down 
resolution method (working from the larger problem down to 
the smaller problem).

• Dynamic programming algorithms invariably proceed by 
solving all of the simplest problem instances before 
combining them into more complicated problem instances 
in a bottom-up fashion.

• Let’s first look at dynamic programming as it is applied to a 
non-optimization problem.
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Computing A Binomial Coefficient
• Computing a binomial coefficient is a basic example of 

applying dynamic programming to a non-optimization 
problem.

• Recall that the binomial coefficient, is the number of 
combinations (subsets) of k elements from an n-
element set (0 ≤ k ≤ n) and is denoted as C(n,k) or      .

• The name “binomial coefficient” comes from the 
participation of these numbers in the so-called binomial 
formula:
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Computing A Binomial Coefficient (cont.)

• Of the numerous properties of binomial coefficient, we 
need to concentrate on only two: 

• Let’s consider the case of computing C(5,3) using this 
recurrence.

• C(5,3) = C(4,2) + C(4,3)    
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Computing A Binomial Coefficient (cont.)
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Computing A Binomial Coefficient (cont.)

• The nature of the recurrence on page 6, which expresses 
the problem of computing C(n, k) in terms of the smaller 
and overlapping problems of computing C(n-1, k-1) and 
C(n-1, k), lends itself to solving using the dynamic 
programming approach.

• To do this, we’ll record the values of the binomial 
coefficients in a matrix of n+1 rows and k+1 columns, 
numbered from 0 to n and 0 to k, respectively.

• The dynamic programming algorithm to solve the 
binomial coefficient problem is given on the next page, 
followed by an example computing C(5,3).
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Computing A Binomial Coefficient (cont.)

To compute C(n,k), the 
matrix is filled row by row, 
starting with row 0 and 
ending with row n.  Each 
row i (0 ≤ i ≤ n) is filled 
left to right, starting with 1 
because C(n,0) = 1.  
Rows 0 through k also 
end with 1 on the matrix 
diagonal: C(i, i) = 1 for 0 ≤
i ≤ k.  The other values in 
the matrix are computed 
by adding the contents of 
the cells in the preceding 
row and the previous 
column and in the 
preceding row and the 
same column.

Algorithm Binomial

//Computes C(n,k) using dynamic programming

//Input: non-negative integers n ≥ k ≥ 0

//Output: C(n,k)

for i ←0 to n do

for j ← 0 to min(i, k) do

if j = 0 or j = k

c[i,j] ← 1

else C[i,j] ← C[i-1,j-1] + C[i-1,j]

Return C[n,k] 
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Computing A Binomial Coefficient (cont.)
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Computing A Binomial Coefficient (cont.)
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Computing A Binomial Coefficient (cont.)
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Computing A Binomial Coefficient (cont.)
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Computing A Binomial Coefficient (cont.)

• What is the time complexity of the dynamic programming binomial 
coefficient algorithm?

• Obviously, the basic operation is addition, so let A(n,k) be the total 
number of additions made by the algorithm when computing 
C(n,k).  Computing each entry in the matrix requires just one 
addition.

• The first k+1 rows of the table form a triangle while the remaining 
n-k rows form a rectangle.  This causes us to split the sum 
expressing A(n,k) into two parts:
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Dynamic Programming and Optimization Problems

• The binomial coefficient problem was an example of the 
application of dynamic programming to a non-optimization 
problem.  

• Dynamic programming is commonly applied to optimization 
problems.  Optimization problems typically wish to find the 
“best” way of doing something.

• Often the number of different ways of doing that 
“something” is exponential, so a brute-force search for the 
best solution is computationally infeasible for all but the 
smallest problem sizes.

• Dynamic programming comes to the rescue is such 
situations; if the problem has a certain amount of structure 
that can be exploited.
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Basic Requirements for Dynamic Programming 
and Optimization Problems

1. Simple Sub-problems: There has to be some way of 
breaking the global optimization problem into sub-problems, 
each having a similar structure to the original problem.  

2. Sub-problem optimality: An optimal solution to the global 
problem must be a composition of optimal sub-problem 
solutions, using a relatively simple combining operation.  It 
must not be possible to find a globally optimal solution that 
contains sub-optimal sub-problems. (Principle of Optimality)

3. Sub-problem Overlap: Optimal solutions to unrelated sub-
problems can contain sub-problems in common.  Indeed, 
such overlap improves the efficiency of a dynamic 
programming algorithm that stores solutions to sub-
problems.
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Principle of Optimality
• The Principle of Optimality states that an optimal solution to 

any instance of an optimization problem is composed of 
optimal solutions to its sub-instances.

• More often than not, this principle will hold in a optimization 
problem.  (An example of a rare case where the principle of 
optimality does not hold is in finding the longest simple path 
in a graph – we’ll see this problem later in the term.)

• Although its applicability to a particular problem needs to be 
checked – it is usually not a principle difficulty in developing 
a dynamic programming algorithm.  The challenge typically 
lies in figuring out what smaller sub-instances need to be 
considered and in deriving an equation relation a solution to 
any instance with solutions to its smaller sub-instances.
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The 0-1 Knapsack Problem
• The 0-1 Knapsack problem consists of a knapsack with a 

fixed capacity, W (weight or volume), a set of objects, S
where each object in S has an associated weight, wi (or 
volume) and benefit, bi.  The objective is to maximize the 
benefit of objects selected to be placed in the knapsack 
without exceeding the capacity of the knapsack.

• Note that the problem is easily solved in Θ(2n) time, by 
enumerating all subsets of S and selecting the one with the 
highest benefit from among all those with total weight not 
exceeding W (brute-force technique).

• As with many dynamic programming problems, one of the 
hardest parts of designing an algorithm for the 0-1 
knapsack problem is to find a nice characterization for sub-
problems (so that the three requirements are satisfied).
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The 0-1 Knapsack Problem (cont.)

• As an example, let’s consider the following 0-1 knapsack 
problem:   Let S = {(3,2), (5,4), (8,5), (4,3), (10,9)} and W = 
20.  (Let pairs be denoted as (weight, benefit).)

• Approach 1: Number the items in S as 1, 2, …,n and 
define, for each k ∈ {1, 2, …, n}, the subset Sk = {items in S
labeled 1, 2, …, k}.

– One way to define sub-problems by using parameter k so that 
sub-problem k is the best way to fill the knapsack using only 
items from the set Sk.  This would be a valid sub-problem 
definition, but it is not clear how to define an optimal solution 
for index k in terms of optimal sub-problem solutions.

– Unfortunately, this solution won’t work.  Why?
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The 0-1 Knapsack Problem (cont.)

• Let S = {(3,2), (5,4), (8,5), (4,3), (10,9)} and W = 20.

(3,2) (5,4) (8,5) (4,3)

Weight = 20, Total benefit = 14

(3,2)

Using first 
four items in 
S

(5,4) (8,5) (10,9)

Weight = 20, Total benefit = 20

Using first 
five items in 
S
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The 0-1 Knapsack Problem (cont.)

• The reason that defining the sub-problems only in terms of 
an index k doesn’t work is that there is not enough 
information represented in a sub-problem to help in solving 
the global optimization problem.

• In other words, we need to get the weights of the objects 
involved.

• We’ll add a second parameter (in addition to k), called w, to 
represent the weight.

• Approach 2: Formulate each sub-problem as computing 
B[k, w], which is defined as the maximum total value of a 
subset of Sk from among all those subsets having total 
weight exactly equal to w.  Thus, B[0,w] = 0 for each w ≤ W.



COP3530 : Dynamic Programming Page 22 Mark Llewellyn  ©

The 0-1 Knapsack Problem (cont.)

• The general case is:

• That is, the best subset of Sk that has a total weight w is either 
the best subset of Sk-1 that has total weight w or the best 
subset of Sk-1 that has total weight w – wk plus the item k.

• Since the best subset of Sk that has total weight w must either 
contain item k or not, one of these two choices must be the 
right choice.  Thus, we have a sub-problem definition that is 
simple (it involves only 2 parameters), satisfies the sub-
problem optimization condition, and it has sub-problems which 
overlap, for the optimal way of summing exactly w to weight 
may be used by many sub-problems.
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The 0-1 Knapsack Problem (cont.)

• Before looking at the algorithm for the 0-1 Knapsack 
problem, note one additional item.

• The definition of B[k,w] is built from B[k-1,w] and 
possibly B[k-1,w-wk]. 

• Thus, the algorithm can be implemented using only a 
single array B, which can be updated in each of a 
series of iterations indexed by parameter k, so that at 
the end of each iteration B[w] = B[k,w].
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The 0-1 Knapsack Problem (cont.)

Algorithm 01Knapsack (S, W)

Input: A set S of n items, such that item I has 
positive benefit bi and positive integer weight 
wi; positive integer maximum total weight W

Output: For w = 0,…,W, maximum benefit B[w] of a 
subset of S with total weight w.

for w ← 0 to W do

B[w] ← 0

for k ← 1 to n do

for w ← W downto wk do

if B[w-wk]+bk > B[w] then

B[w] ← B[w-wk]+bk

O(nW)


