
COP3530 : Dynamic Programming Page 1 Mark Llewellyn ©

COP 3530: Computer Science III
Summer 2005

Dynamic Programming

School of Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
CSB 242, (407)823-2790

Course Webpage:
http://www.cs.ucf.edu/courses/cop3530/sum2005

COP3530 : Dynamic Programming Page 2 Mark Llewellyn ©

What Is Dynamic Programming?
• Dynamic programming is an algorithm design technique with a rather

interesting history. It was invented in 1957 by prominent U.S.
mathematician Richard Bellman as a general method for optimizing
multistage decision processes.

– The word “programming” in the name of this technique stands for
“planning” or “a series of choices” and does not refer to computer
programming. The word “dynamic” conveys the idea that the
choices may depend on the current state, rather than being
decided ahead of time.

• Useful analogy is a pre-programmed radio show with a set play-list as
opposed to a call-in radio show where listeners request songs to be
played – the call-in show is “dynamically programmed.”

• Originally a tool of applied mathematics designed for optimization
problems, in computer science it is considered as a general algorithm
design technique which is not limited to optimization problems.

COP3530 : Dynamic Programming Page 3 Mark Llewellyn ©

What Is Dynamic Programming? (cont.)

• Dynamic programming is a technique for solving
problems with overlapping sub-problems.

• Typically, these sub-problems arise from a recurrence
relating a solution to a given problem with solutions to its
smaller sub-problems of the same type.

• Rather than solving overlapping sub-problems again and
again, dynamic programming solves each of the smaller
sub-problems only once and stores the results in a table
from which the solution to the original problem can be
obtained.

• One of the defining features of dynamic programming is
that it is capable of replacing exponential-time
computation with a polynomial-time computation.

COP3530 : Dynamic Programming Page 4 Mark Llewellyn ©

What Is Dynamic Programming? (cont.)

• Dynamic programming is similar to divide and conquer in
the sense that it is based on a recursive division of a
problem instance into smaller or simpler problem instances.

• Divide and conquer algorithms often use a top-down
resolution method (working from the larger problem down to
the smaller problem).

• Dynamic programming algorithms invariably proceed by
solving all of the simplest problem instances before
combining them into more complicated problem instances
in a bottom-up fashion.

• Let’s first look at dynamic programming as it is applied to a
non-optimization problem.

COP3530 : Dynamic Programming Page 5 Mark Llewellyn ©

Computing A Binomial Coefficient
• Computing a binomial coefficient is a basic example of

applying dynamic programming to a non-optimization
problem.

• Recall that the binomial coefficient, is the number of
combinations (subsets) of k elements from an n-
element set (0 ≤ k ≤ n) and is denoted as C(n,k) or .

• The name “binomial coefficient” comes from the
participation of these numbers in the so-called binomial
formula:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

() () () () niinnn bn,nCbai,nCa0,nCba ++++=+ − LL

COP3530 : Dynamic Programming Page 6 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

• Of the numerous properties of binomial coefficient, we
need to concentrate on only two:

• Let’s consider the case of computing C(5,3) using this
recurrence.

• C(5,3) = C(4,2) + C(4,3)

⎪⎩

⎪
⎨

⎧

<<⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛

−
−

==
=⎟

⎠
⎞

⎜
⎝
⎛

nk0if
k

1n
1k
1n

nkor0kif1

k
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
3
4

2
4

3
5

Also expressed as:

COP3530 : Dynamic Programming Page 7 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

3
4

2
4

3
5

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

2
3

1
3

2
4

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

3
3

2
3

3
4

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

1
2

0
2

1
3

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

2
2

1
2

2
3

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

2
2

1
2

2
3 1

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

1
1

0
1

1
2

1

1 1

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

1
1

0
1

1
2 1

1 1

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

1
1

0
1

1
2 1

1 1

2 2 2

3
3 3

6 4

10

COP3530 : Dynamic Programming Page 8 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

• The nature of the recurrence on page 6, which expresses
the problem of computing C(n, k) in terms of the smaller
and overlapping problems of computing C(n-1, k-1) and
C(n-1, k), lends itself to solving using the dynamic
programming approach.

• To do this, we’ll record the values of the binomial
coefficients in a matrix of n+1 rows and k+1 columns,
numbered from 0 to n and 0 to k, respectively.

• The dynamic programming algorithm to solve the
binomial coefficient problem is given on the next page,
followed by an example computing C(5,3).

COP3530 : Dynamic Programming Page 9 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

To compute C(n,k), the
matrix is filled row by row,
starting with row 0 and
ending with row n. Each
row i (0 ≤ i ≤ n) is filled
left to right, starting with 1
because C(n,0) = 1.
Rows 0 through k also
end with 1 on the matrix
diagonal: C(i, i) = 1 for 0 ≤
i ≤ k. The other values in
the matrix are computed
by adding the contents of
the cells in the preceding
row and the previous
column and in the
preceding row and the
same column.

Algorithm Binomial

//Computes C(n,k) using dynamic programming

//Input: non-negative integers n ≥ k ≥ 0

//Output: C(n,k)

for i ←0 to n do

for j ← 0 to min(i, k) do

if j = 0 or j = k

c[i,j] ← 1

else C[i,j] ← C[i-1,j-1] + C[i-1,j]

Return C[n,k]

COP3530 : Dynamic Programming Page 10 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

1

2

1

1

1

1

1

1

0

4

2

0

5

13

11

31

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
4

COP3530 : Dynamic Programming Page 11 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

1

2

1

1

1

1

1

1

0

4

2

0

5

13

11

31

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
2

+

+ +

+
+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
5

+

+ +

COP3530 : Dynamic Programming Page 12 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

10

6

3

1

2

1

1

1

1

1

1

0

444

22

0

1055

133

11

31

+

+ +

+
+

+

Pascal’s
Triangle ??

+

+ +

COP3530 : Dynamic Programming Page 13 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

…

1n-1

1

k

1

2

1

1

1

1

1

1

0

n

…

22

0

k

13

11

k-1…31

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1k
1n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
k

1n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

For general C(n,k)
case

COP3530 : Dynamic Programming Page 14 Mark Llewellyn ©

Computing A Binomial Coefficient (cont.)

• What is the time complexity of the dynamic programming binomial
coefficient algorithm?

• Obviously, the basic operation is addition, so let A(n,k) be the total
number of additions made by the algorithm when computing
C(n,k). Computing each entry in the matrix requires just one
addition.

• The first k+1 rows of the table form a triangle while the remaining
n-k rows form a rectangle. This causes us to split the sum
expressing A(n,k) into two parts:

() () () ()∑ ∑ ∑ ∑∑∑
= += = +==

−

=
Θ∈−+

−
=+−=+=

k

1i

n

1ki

k

1i

n

1ki

k

1j

1i

1j
)nk(knk

2
k1kk1i11k,nA

COP3530 : Dynamic Programming Page 15 Mark Llewellyn ©

Dynamic Programming and Optimization Problems

• The binomial coefficient problem was an example of the
application of dynamic programming to a non-optimization
problem.

• Dynamic programming is commonly applied to optimization
problems. Optimization problems typically wish to find the
“best” way of doing something.

• Often the number of different ways of doing that
“something” is exponential, so a brute-force search for the
best solution is computationally infeasible for all but the
smallest problem sizes.

• Dynamic programming comes to the rescue is such
situations; if the problem has a certain amount of structure
that can be exploited.

COP3530 : Dynamic Programming Page 16 Mark Llewellyn ©

Basic Requirements for Dynamic Programming
and Optimization Problems

1. Simple Sub-problems: There has to be some way of
breaking the global optimization problem into sub-problems,
each having a similar structure to the original problem.

2. Sub-problem optimality: An optimal solution to the global
problem must be a composition of optimal sub-problem
solutions, using a relatively simple combining operation. It
must not be possible to find a globally optimal solution that
contains sub-optimal sub-problems. (Principle of Optimality)

3. Sub-problem Overlap: Optimal solutions to unrelated sub-
problems can contain sub-problems in common. Indeed,
such overlap improves the efficiency of a dynamic
programming algorithm that stores solutions to sub-
problems.

COP3530 : Dynamic Programming Page 17 Mark Llewellyn ©

Principle of Optimality
• The Principle of Optimality states that an optimal solution to

any instance of an optimization problem is composed of
optimal solutions to its sub-instances.

• More often than not, this principle will hold in a optimization
problem. (An example of a rare case where the principle of
optimality does not hold is in finding the longest simple path
in a graph – we’ll see this problem later in the term.)

• Although its applicability to a particular problem needs to be
checked – it is usually not a principle difficulty in developing
a dynamic programming algorithm. The challenge typically
lies in figuring out what smaller sub-instances need to be
considered and in deriving an equation relation a solution to
any instance with solutions to its smaller sub-instances.

COP3530 : Dynamic Programming Page 18 Mark Llewellyn ©

The 0-1 Knapsack Problem
• The 0-1 Knapsack problem consists of a knapsack with a

fixed capacity, W (weight or volume), a set of objects, S
where each object in S has an associated weight, wi (or
volume) and benefit, bi. The objective is to maximize the
benefit of objects selected to be placed in the knapsack
without exceeding the capacity of the knapsack.

• Note that the problem is easily solved in Θ(2n) time, by
enumerating all subsets of S and selecting the one with the
highest benefit from among all those with total weight not
exceeding W (brute-force technique).

• As with many dynamic programming problems, one of the
hardest parts of designing an algorithm for the 0-1
knapsack problem is to find a nice characterization for sub-
problems (so that the three requirements are satisfied).

COP3530 : Dynamic Programming Page 19 Mark Llewellyn ©

The 0-1 Knapsack Problem (cont.)

• As an example, let’s consider the following 0-1 knapsack
problem: Let S = {(3,2), (5,4), (8,5), (4,3), (10,9)} and W =
20. (Let pairs be denoted as (weight, benefit).)

• Approach 1: Number the items in S as 1, 2, …,n and
define, for each k ∈ {1, 2, …, n}, the subset Sk = {items in S
labeled 1, 2, …, k}.

– One way to define sub-problems by using parameter k so that
sub-problem k is the best way to fill the knapsack using only
items from the set Sk. This would be a valid sub-problem
definition, but it is not clear how to define an optimal solution
for index k in terms of optimal sub-problem solutions.

– Unfortunately, this solution won’t work. Why?

COP3530 : Dynamic Programming Page 20 Mark Llewellyn ©

The 0-1 Knapsack Problem (cont.)

• Let S = {(3,2), (5,4), (8,5), (4,3), (10,9)} and W = 20.

(3,2) (5,4) (8,5) (4,3)

Weight = 20, Total benefit = 14

(3,2)

Using first
four items in
S

(5,4) (8,5) (10,9)

Weight = 20, Total benefit = 20

Using first
five items in
S

COP3530 : Dynamic Programming Page 21 Mark Llewellyn ©

The 0-1 Knapsack Problem (cont.)

• The reason that defining the sub-problems only in terms of
an index k doesn’t work is that there is not enough
information represented in a sub-problem to help in solving
the global optimization problem.

• In other words, we need to get the weights of the objects
involved.

• We’ll add a second parameter (in addition to k), called w, to
represent the weight.

• Approach 2: Formulate each sub-problem as computing
B[k, w], which is defined as the maximum total value of a
subset of Sk from among all those subsets having total
weight exactly equal to w. Thus, B[0,w] = 0 for each w ≤ W.

COP3530 : Dynamic Programming Page 22 Mark Llewellyn ©

The 0-1 Knapsack Problem (cont.)

• The general case is:

• That is, the best subset of Sk that has a total weight w is either
the best subset of Sk-1 that has total weight w or the best
subset of Sk-1 that has total weight w – wk plus the item k.

• Since the best subset of Sk that has total weight w must either
contain item k or not, one of these two choices must be the
right choice. Thus, we have a sub-problem definition that is
simple (it involves only 2 parameters), satisfies the sub-
problem optimization condition, and it has sub-problems which
overlap, for the optimal way of summing exactly w to weight
may be used by many sub-problems.

[] { }⎩
⎨
⎧

+−−−
>−

=
otherwiseb]ww,1k[B],w,1k[Bmax

wwif]w,1k[B
w,kB

kk

k

COP3530 : Dynamic Programming Page 23 Mark Llewellyn ©

The 0-1 Knapsack Problem (cont.)

• Before looking at the algorithm for the 0-1 Knapsack
problem, note one additional item.

• The definition of B[k,w] is built from B[k-1,w] and
possibly B[k-1,w-wk].

• Thus, the algorithm can be implemented using only a
single array B, which can be updated in each of a
series of iterations indexed by parameter k, so that at
the end of each iteration B[w] = B[k,w].

COP3530 : Dynamic Programming Page 24 Mark Llewellyn ©

The 0-1 Knapsack Problem (cont.)

Algorithm 01Knapsack (S, W)

Input: A set S of n items, such that item I has
positive benefit bi and positive integer weight
wi; positive integer maximum total weight W

Output: For w = 0,…,W, maximum benefit B[w] of a
subset of S with total weight w.

for w ← 0 to W do

B[w] ← 0

for k ← 1 to n do

for w ← W downto wk do

if B[w-wk]+bk > B[w] then

B[w] ← B[w-wk]+bk

O(nW)

