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What Is A Divide-and-Conquer Algorithm?
• Divide-and-conquer is probably the best-known 

general algorithm design technique.

• A large number of very efficient algorithms are specific 
implementations of this general strategy.

• Divide-and-conquer algorithms work according to the 
following general plan:

1. A problem’s instance is divided into several smaller instances 
of the same problem, ideally of about the same size.

2. The smaller instances are solved (typically recursively, though 
sometimes a different algorithm is employed when the 
instances become small enough).

3. If necessary, the solutions obtained for the smaller instances 
are combined to get a solution to the original problem.
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Typical Divide-and-Conquer Strategy

Problem      of size n

Subproblem 1 of size n/2 Subproblem 2 of size n/2

Solution to subproblem 1 Solution to subproblem 2

Solution to original problem
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Divide-and-Conquer Algorithms (cont.)

• The divide-and-conquer technique as diagrammed on 
the previous page, depicts the case of dividing a 
problem into two smaller subproblems.

– This is by far the most commonly occurring case, at least for 
divide-and-conquer algorithms designed to be executed on a 
single-processor computer.

• As an example, let’s consider the problem of 
computing the sum of n numbers a0, …, an-1.  If n > 1, 
we can divide the problem into two instances of the 
same problem: to compute the sum of the first ⎣n/2⎦
numbers and to compute the sum of the remaining
⎡n/2⎤ numbers.  (Of course, if n=1, we simply return a0
as the answer.)
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Divide-and-Conquer Algorithms (cont.)

• Once each of these two sums is computed (by applying the same 
method recursively), we can add their values together to get the
sum in question:

a0 + … + an-1 = (a0 + … +a⎣n/2⎦ - 1) + (a⎣n/2⎦ +… + an-1)

• Is this an efficient way to compute the sum of n numbers?  Is it 
more/less efficient than brute force?

– Consider 1+2+3+4+5+6+7+8+9+10
= (1+2+3+4+5) + (6+7+8+9+10) = [(1+2) + (3+4+5)] + [(6+7) + (8+9+10)]

= 1 + 2 + 3 + (4+5) + 6 + 7 + 8 + (9+10)

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10   (total of 9 addition operations plus 8 splits)

• Thus, not every divide-and-conquer algorithm is necessarily more 
efficient than even a brute force solution.  However, often it is the 
case that a divide-and-conquer approach is more efficient than 
another approach.
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Divide-and-Conquer Algorithms (cont.)

• At this point in time, we will consider only sequential 
algorithms.  Later in the semester we will introduce 
parallel algorithms.

• Until that time, keep in mind that the divide-and-
conquer technique is ideally suited for parallel 
computations, in which each subproblem can be 
solved simultaneously by its own processor.

• The sum example illustrates the most typical case of 
divide-and-conquer: a problem’s instance of size n is 
divided into two instances of size n/2.

• More generally, an instance of size n can be divided 
into several instances of size n/b, with a of them 
needing to be solved (a ≥ 1 and b > 1).
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Divide-and-Conquer Algorithms (cont.)

• If size n is a power of b the following recurrence for the 
running time T(n) holds:

T(n) = aT(n/b) + f(n)

• The function f(n) accounts for the time spent on 
dividing the problem into smaller ones and on 
combining their solutions.

• For the summation example, a = b = 2 and f(n) = 1.
• The recurrence shown above is called the general 

Divide-and-Conquer recurrence.  Obviously, the order 
of growth of its solution T(n) depends on the values of 
the constants a and b as well as the order of growth of 
the function f(n).
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Divide-and-Conquer Algorithms (cont.)

• The efficiency analysis of many divide-and-conquer 
algorithms is greatly simplified by the following 
theorem:

Master Theorem

If f(n) ∈ Θ(nd) where d ≥ 0 in T(n) = aT(n/b) + f(n), then
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Divide-and-Conquer Algorithms (cont.)

• Returning to our summation example, the recurrence equation for 
the number of additions A(n) made by the divide-and-conquer 
approach on inputs of size n = 2k is:

A(n) = 2A(n/2) + 1

• Thus, for this example, a = 2, b = 2, and d = 0; hence, since a > 
bd we have:

• Thus, we were able to find the solution’s efficiency class without 
going through the drudgery of solving the recurrence.  However, 
this approach can only establish a solution’s order of growth to 
within an unknown multiplicative constant while solving a 
recurrence equation with a specific initial condition yields an exact 
answer (at least for n’s that are powers of b.)

( ) ( ) )n(nn)n(A 2logalog 2b Θ=Θ=Θ∈
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Computing integer power an

• Brute force algorithm

Algorithm power(a,n)
value ← 1
for i ← 1 to n do

value ← value × a
return value

• Complexity: O(n)

aaaa n ××= K
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Computing integer power an

• Divide-and-Conquer algorithm

Algorithm power(a,n)
if (n = 1)

return a
partial ← power(a,floor(n/2))
if n mod 2 = 0

return partial × partial 
else

return partial × partial × a

• Complexity: T(n) = T(n/2) + O(1) ⇒T(n) is O(log n)
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Integer Multiplication

• Multiply two n-digit integers I and J.
ex: 61438521 × 94736407

7 4 0 4 3 9 0 3 7 4 6 4 0 2 8 5

4 8 0 4 5 7 5 4 2   
0 0 0 0 0 0 0 0        

7 4 6 9 6 0 0 3 4        

7 0 4 6 3 7 4 9 
12583 4  1  6 

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−
×

L
• Complexity: O(n2)
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Integer Multiplication
• Divide : Split I and J into high-order and low-order digits. 

– ex: I = 61438521 is divided into Ih= 6143 and Il = 8521
– i.e. I = 6143 × 104 + 8521

• Conquer : define I × J by multiplying the parts and adding
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Complexity: T(n) = 4T(n/2) + n ⇒ T(n) is O(n2).
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Integer Multiplication
• Improved Algorithm

( ) ( ) ( )[ ] ( )ll
n

hllh
n

hh JIJIJIJIJI ×+×+×+×=× 2/10  10 

• Complexity:  T(n) = 3T(n/2) + cn, 
⇒ T(n) is O(nlog

2
3), by the Master Theorem

( ) ( ) ( ) ( ) ( )[ ] ( )ll
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subProblem3 subProblem2subProblem2subProblem1 subProblem1

• Thus, T(n) is O(n1.585).



COP3530 : Divide-and-Conquer Page 15 Mark Llewellyn  ©

Mergesort

• Mergesort is a perfect example of a successful 
application of the divide-and-conquer technique.

• It sorts a given array A[0..n-1] by dividing it into two 
halves A[0.. ⎣n/2⎦ - 1] and A[⎣n/2⎦ ..n-1], sorting each of 
them recursively, and then merging the two smaller 
sorted arrays into a single sorted one.

• Algorithms for performing the merge and the 
mergesort are presented on the next two pages.
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Mergesort Algorithm

Algorithm Mergesort( A[0..n-1])
//sorts array A[0..n-1] by recursive mergesort
//Input: An array A[0..n-1] of orderable elements
//Output: Array A[0..n-1] sorted in nondecreasing order

if n > 1
copy A[0..⎣n/2⎦-1] to B[0..⎣n/2⎦-1]
copy A[⎣n/2⎦..n-1] to C[0..⎣n/2⎦-1]
Mergesort(B[0..⎣n/2⎦-1)
Mergesort(C[0..⎣n/2⎦-1)
Merge(B, C, A)
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Merge Algorithm

Algorithm Merge( B[0..p-1], C[0..q-1], A[0..p+q-1])
//merges two sorted arrays into one sorted array
//Input: Arrays B[0..p-1] and C[0..q-1], both sorted
//Output: Sorted array A[0..p+q-1] of the elements of B and C

i ← 0;   j ← 0;  k ← 0;
while I < p and j < q do

if B[i] ≤ C[j]
A[k] ← B[i];  i ← i + 1;

else  A[k] ← C[j];  j ← j + 1;
k ← k + 1;

if i = p
copy C[j..q-1] to A[k..p+q-1]

else copy B[i..p-1] to A[k..p+1-1]
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An Example Mergesort Operation
8   3   2   9   7   1   5   4

8   3   2   9   7   1   5   4

8   3 2   9 7   1 5   4

8 3 2 9 7 1 5 4

3   8 2   9 1   7 4   5

2   3   8   9   1   4   5   7

1  2   3   4   5   7   8   9
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Efficiency of Mergesort
• How efficient is mergesort?

• For simplicity, lets assume that n is a power of 2.  The 
recurrence relation for the number of key comparisons 
C(n) is:

C(n) = 2C(n/2) + Cmerge(n)   for n > 1, C(1) = 0

• Now we need to determine Cmerge(n), which is the 
number of key comparisons performed during the 
merging stage (no key comparisons are performed 
during the splitting stage).

• At each step, exactly one comparison is made, after 
which the total number of elements in the two arrays 
still needed to be processed is reduced by one.
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Efficiency of Mergesort (cont.)

• In the worst case, neither of the two arrays becomes 
empty before the other one contains just one element.

• Therefore, for the worst case, Cmerge(n) = n-1, and the 
recurrence becomes:

• According to the Master Theorem, Cworst(n) ∈ Θ(n log n).

• In fact, it is easy to find the exact solution to the worst 
case recurrence for n = 2k:

Cworst(n) = 2Cworst(n/2) + n – 1    for n > 1, Cworst(1) = 0

Cworst(n) = n log2 n – n + 1
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Efficiency of Mergesort (cont.)

• The number of key comparisons made by mergesort in 
the worst case comes very close to the theoretical 
minimum that any general comparison-based sorting 
algorithm can achieve.

– The theoretical minimum is ⎡log2 n!⎤ ≅ ⎡n log2 n – 1.44n⎤

• There is, however, a shortcoming of the mergesort 
algorithm.  Can you think what it might be?

• It is the fact that it requires a linear amount of 
additional memory (the arrays B and C used to hold 
the halves of the original array A).  To overcome this 
problem requires merging in place, however, this 
algorithm is very complicated and has a significantly 
larger multiplicative constant making it of theoretical 
interest only.
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Matrix Multiplication
• Given two n × n matrices A = (aij) and B = (bij), 0 ≤I, j 

≤ n-1, recall that the product AB is defined to be the n ×
n matrix C = (cij) , where 

• The straightforward algorithm based on this definition 
clearly performs n3 (scalar) multiplications.

• In 1969 Strassen devised a divide-and-conquer 
algorithm for matrix multiplication of complexity O(nlog

2
7) 

using certain algebraic identities for multiplying 2 × 2 
matrices.

∑
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Matrix Multiplication (cont.)

• The classic method of multiplying 2 × 2 matrices performs 8 
multiplications as follows:

• Strassen discovered a way to carry out the same matrix 
product AB using only the following seven multiplications:
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Matrix Multiplication (cont.)

• Using these identities, the matrix product is then given by:

• Now consider the case of two n × n matrices where, for 
convenience, we’ll assume that n = 2k.

• Strassen’s divide and conquer approach begins by 
partitioning the matrices A and B into four (n/2) × (n/2) 
submatrices, as follows:
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Matrix Multiplication (cont.)

• The product AB can be expressed in terms of eight matrix 
products as follows: 

• In complete analogy with the 2 × 2 case, the following matrix 
multiplications will produce the matrix product AB.
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7 multiplication operations
10 +/- operations
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Matrix Multiplication (cont.)

• As in the case of the 2 × 2 matrices, the matrix product AB is 
then given by: 

• The complexity of Strassen’s algorithm satisfies the 
recurrence:

initial condition T(1) = 1
• By the Master Theorem (see page 8), T(n) ∈ Θ(nlog

2
7).

• Since log2
7 is approximately 2.81, Strassen’s algorithm 

provides a matrix multiplication algorithm with complexity 
Θ(nlog

2
7) a significant improvement over the Θ(n3) classical 

algorithm.
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Matrix Multiplication (cont.)

• As an aside, you may be interested to know that Winograd  
discovered the following set of identities, which leads to a 
method of multiplying 2 × 2 matrices using only 15 +/-
operations in addition to the 7 multiplication operations. 

• Winograd’s product matrix is given by:
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7 multiplication 
operations and 
24 +/-
operations.  

NOTE:  Only 15 
of the +/-
operations are 
distinct!
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Special Note On Binary Search
• Binary search is often presented (especially in CS2-level texts) as 

the quintessential example of a divide-and-conquer algorithm.

• This interpretation is flawed because, in fact, binary search is a 
very atypical case of divide-and-conquer.

• According to the definition, the divide-and-conquer technique 
divides a problem into several subproblems, each of which need 
to be solved.  This is not the case for binary search where, 
instead, only one of the two subproblems needs to be solved.

• Therefore, if binary search is to be considered as a divide-and-
conquer algorithm, it should be looked on as a degenerative case
of the technique.

• As a matter of fact, binary search fits better into the class of
decrease-by-half algorithms.


