
COP3530 : Divide-and-Conquer Page 1 Mark Llewellyn ©

COP 3530: Computer Science III
Summer 2005

Divide-and-Conquer Algorithms

School of Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
CSB 242, (407)823-2790

Course Webpage:
http://www.cs.ucf.edu/courses/cop3530/sum2005

COP3530 : Divide-and-Conquer Page 2 Mark Llewellyn ©

What Is A Divide-and-Conquer Algorithm?
• Divide-and-conquer is probably the best-known

general algorithm design technique.

• A large number of very efficient algorithms are specific
implementations of this general strategy.

• Divide-and-conquer algorithms work according to the
following general plan:

1. A problem’s instance is divided into several smaller instances
of the same problem, ideally of about the same size.

2. The smaller instances are solved (typically recursively, though
sometimes a different algorithm is employed when the
instances become small enough).

3. If necessary, the solutions obtained for the smaller instances
are combined to get a solution to the original problem.

COP3530 : Divide-and-Conquer Page 3 Mark Llewellyn ©

Typical Divide-and-Conquer Strategy

Problem of size n

Subproblem 1 of size n/2 Subproblem 2 of size n/2

Solution to subproblem 1 Solution to subproblem 2

Solution to original problem

COP3530 : Divide-and-Conquer Page 4 Mark Llewellyn ©

Divide-and-Conquer Algorithms (cont.)

• The divide-and-conquer technique as diagrammed on
the previous page, depicts the case of dividing a
problem into two smaller subproblems.

– This is by far the most commonly occurring case, at least for
divide-and-conquer algorithms designed to be executed on a
single-processor computer.

• As an example, let’s consider the problem of
computing the sum of n numbers a0, …, an-1. If n > 1,
we can divide the problem into two instances of the
same problem: to compute the sum of the first ⎣n/2⎦
numbers and to compute the sum of the remaining
⎡n/2⎤ numbers. (Of course, if n=1, we simply return a0
as the answer.)

COP3530 : Divide-and-Conquer Page 5 Mark Llewellyn ©

Divide-and-Conquer Algorithms (cont.)

• Once each of these two sums is computed (by applying the same
method recursively), we can add their values together to get the
sum in question:

a0 + … + an-1 = (a0 + … +a⎣n/2⎦ - 1) + (a⎣n/2⎦ +… + an-1)

• Is this an efficient way to compute the sum of n numbers? Is it
more/less efficient than brute force?

– Consider 1+2+3+4+5+6+7+8+9+10
= (1+2+3+4+5) + (6+7+8+9+10) = [(1+2) + (3+4+5)] + [(6+7) + (8+9+10)]

= 1 + 2 + 3 + (4+5) + 6 + 7 + 8 + (9+10)

= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 (total of 9 addition operations plus 8 splits)

• Thus, not every divide-and-conquer algorithm is necessarily more
efficient than even a brute force solution. However, often it is the
case that a divide-and-conquer approach is more efficient than
another approach.

COP3530 : Divide-and-Conquer Page 6 Mark Llewellyn ©

Divide-and-Conquer Algorithms (cont.)

• At this point in time, we will consider only sequential
algorithms. Later in the semester we will introduce
parallel algorithms.

• Until that time, keep in mind that the divide-and-
conquer technique is ideally suited for parallel
computations, in which each subproblem can be
solved simultaneously by its own processor.

• The sum example illustrates the most typical case of
divide-and-conquer: a problem’s instance of size n is
divided into two instances of size n/2.

• More generally, an instance of size n can be divided
into several instances of size n/b, with a of them
needing to be solved (a ≥ 1 and b > 1).

COP3530 : Divide-and-Conquer Page 7 Mark Llewellyn ©

Divide-and-Conquer Algorithms (cont.)

• If size n is a power of b the following recurrence for the
running time T(n) holds:

T(n) = aT(n/b) + f(n)

• The function f(n) accounts for the time spent on
dividing the problem into smaller ones and on
combining their solutions.

• For the summation example, a = b = 2 and f(n) = 1.
• The recurrence shown above is called the general

Divide-and-Conquer recurrence. Obviously, the order
of growth of its solution T(n) depends on the values of
the constants a and b as well as the order of growth of
the function f(n).

COP3530 : Divide-and-Conquer Page 8 Mark Llewellyn ©

Divide-and-Conquer Algorithms (cont.)

• The efficiency analysis of many divide-and-conquer
algorithms is greatly simplified by the following
theorem:

Master Theorem

If f(n) ∈ Θ(nd) where d ≥ 0 in T(n) = aT(n/b) + f(n), then

()
()
()⎪

⎪
⎩

⎪⎪
⎨

⎧

>Θ

=Θ

<Θ

∈
dalog

dd

dd

baifn

baifnlogn

baifn

)n(T
b

COP3530 : Divide-and-Conquer Page 9 Mark Llewellyn ©

Divide-and-Conquer Algorithms (cont.)

• Returning to our summation example, the recurrence equation for
the number of additions A(n) made by the divide-and-conquer
approach on inputs of size n = 2k is:

A(n) = 2A(n/2) + 1

• Thus, for this example, a = 2, b = 2, and d = 0; hence, since a >
bd we have:

• Thus, we were able to find the solution’s efficiency class without
going through the drudgery of solving the recurrence. However,
this approach can only establish a solution’s order of growth to
within an unknown multiplicative constant while solving a
recurrence equation with a specific initial condition yields an exact
answer (at least for n’s that are powers of b.)

() ())n(nn)n(A 2logalog 2b Θ=Θ=Θ∈

COP3530 : Divide-and-Conquer Page 10 Mark Llewellyn ©

Computing integer power an

• Brute force algorithm

Algorithm power(a,n)
value ← 1
for i ← 1 to n do

value ← value × a
return value

• Complexity: O(n)

aaaa n ××= K

COP3530 : Divide-and-Conquer Page 11 Mark Llewellyn ©

Computing integer power an

• Divide-and-Conquer algorithm

Algorithm power(a,n)
if (n = 1)

return a
partial ← power(a,floor(n/2))
if n mod 2 = 0

return partial × partial
else

return partial × partial × a

• Complexity: T(n) = T(n/2) + O(1) ⇒T(n) is O(log n)

⎪⎩

⎪
⎨

⎧

××

×=
odd is n ifaaa

even is n ifaaa
2
n

2
n

2
n

2
n

n

COP3530 : Divide-and-Conquer Page 12 Mark Llewellyn ©

Integer Multiplication

• Multiply two n-digit integers I and J.
ex: 61438521 × 94736407

7 4 0 4 3 9 0 3 7 4 6 4 0 2 8 5

4 8 0 4 5 7 5 4 2
0 0 0 0 0 0 0 0

7 4 6 9 6 0 0 3 4

7 0 4 6 3 7 4 9
12583 4 1 6

−−−−−−−−−−−−−−−

−−−−−−−−−−−−−
×

L
• Complexity: O(n2)

COP3530 : Divide-and-Conquer Page 13 Mark Llewellyn ©

Integer Multiplication
• Divide : Split I and J into high-order and low-order digits.

– ex: I = 61438521 is divided into Ih= 6143 and Il = 8521
– i.e. I = 6143 × 104 + 8521

• Conquer : define I × J by multiplying the parts and adding
l

n
h

l
n

h

JJJ

III

+=

+=
2/

2/

10

10

() () ()[] ()ll
n

hllh
n

hh JIJIJIJI ×+×+×+×= 2/10 10

Complexity: T(n) = 4T(n/2) + n ⇒ T(n) is O(n2).
subProblem1 subProblem3 subProblem4 subProblem2

() ()l
n

hl
n

h JJIIJI +×+=× 2/2/ 10 10

COP3530 : Divide-and-Conquer Page 14 Mark Llewellyn ©

Integer Multiplication
• Improved Algorithm

() () ()[] ()ll
n

hllh
n

hh JIJIJIJIJI ×+×+×+×=× 2/10 10

• Complexity: T(n) = 3T(n/2) + cn,
⇒ T(n) is O(nlog

2
3), by the Master Theorem

() () () () ()[] ()ll
n

llhhhllh
n

hh JIJIJIJJIIJI ×+×+×+−×−+×= 2/10 10

subProblem3 subProblem2subProblem2subProblem1 subProblem1

• Thus, T(n) is O(n1.585).

COP3530 : Divide-and-Conquer Page 15 Mark Llewellyn ©

Mergesort

• Mergesort is a perfect example of a successful
application of the divide-and-conquer technique.

• It sorts a given array A[0..n-1] by dividing it into two
halves A[0.. ⎣n/2⎦ - 1] and A[⎣n/2⎦ ..n-1], sorting each of
them recursively, and then merging the two smaller
sorted arrays into a single sorted one.

• Algorithms for performing the merge and the
mergesort are presented on the next two pages.

COP3530 : Divide-and-Conquer Page 16 Mark Llewellyn ©

Mergesort Algorithm

Algorithm Mergesort(A[0..n-1])
//sorts array A[0..n-1] by recursive mergesort
//Input: An array A[0..n-1] of orderable elements
//Output: Array A[0..n-1] sorted in nondecreasing order

if n > 1
copy A[0..⎣n/2⎦-1] to B[0..⎣n/2⎦-1]
copy A[⎣n/2⎦..n-1] to C[0..⎣n/2⎦-1]
Mergesort(B[0..⎣n/2⎦-1)
Mergesort(C[0..⎣n/2⎦-1)
Merge(B, C, A)

COP3530 : Divide-and-Conquer Page 17 Mark Llewellyn ©

Merge Algorithm

Algorithm Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])
//merges two sorted arrays into one sorted array
//Input: Arrays B[0..p-1] and C[0..q-1], both sorted
//Output: Sorted array A[0..p+q-1] of the elements of B and C

i ← 0; j ← 0; k ← 0;
while I < p and j < q do

if B[i] ≤ C[j]
A[k] ← B[i]; i ← i + 1;

else A[k] ← C[j]; j ← j + 1;
k ← k + 1;

if i = p
copy C[j..q-1] to A[k..p+q-1]

else copy B[i..p-1] to A[k..p+1-1]

COP3530 : Divide-and-Conquer Page 18 Mark Llewellyn ©

An Example Mergesort Operation
8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

COP3530 : Divide-and-Conquer Page 19 Mark Llewellyn ©

Efficiency of Mergesort
• How efficient is mergesort?

• For simplicity, lets assume that n is a power of 2. The
recurrence relation for the number of key comparisons
C(n) is:

C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0

• Now we need to determine Cmerge(n), which is the
number of key comparisons performed during the
merging stage (no key comparisons are performed
during the splitting stage).

• At each step, exactly one comparison is made, after
which the total number of elements in the two arrays
still needed to be processed is reduced by one.

COP3530 : Divide-and-Conquer Page 20 Mark Llewellyn ©

Efficiency of Mergesort (cont.)

• In the worst case, neither of the two arrays becomes
empty before the other one contains just one element.

• Therefore, for the worst case, Cmerge(n) = n-1, and the
recurrence becomes:

• According to the Master Theorem, Cworst(n) ∈ Θ(n log n).

• In fact, it is easy to find the exact solution to the worst
case recurrence for n = 2k:

Cworst(n) = 2Cworst(n/2) + n – 1 for n > 1, Cworst(1) = 0

Cworst(n) = n log2 n – n + 1

COP3530 : Divide-and-Conquer Page 21 Mark Llewellyn ©

Efficiency of Mergesort (cont.)

• The number of key comparisons made by mergesort in
the worst case comes very close to the theoretical
minimum that any general comparison-based sorting
algorithm can achieve.

– The theoretical minimum is ⎡log2 n!⎤ ≅ ⎡n log2 n – 1.44n⎤

• There is, however, a shortcoming of the mergesort
algorithm. Can you think what it might be?

• It is the fact that it requires a linear amount of
additional memory (the arrays B and C used to hold
the halves of the original array A). To overcome this
problem requires merging in place, however, this
algorithm is very complicated and has a significantly
larger multiplicative constant making it of theoretical
interest only.

COP3530 : Divide-and-Conquer Page 22 Mark Llewellyn ©

Matrix Multiplication
• Given two n × n matrices A = (aij) and B = (bij), 0 ≤I, j

≤ n-1, recall that the product AB is defined to be the n ×
n matrix C = (cij) , where

• The straightforward algorithm based on this definition
clearly performs n3 (scalar) multiplications.

• In 1969 Strassen devised a divide-and-conquer
algorithm for matrix multiplication of complexity O(nlog

2
7)

using certain algebraic identities for multiplying 2 × 2
matrices.

∑
−

=
=

1n

0k
kjikij bac

COP3530 : Divide-and-Conquer Page 23 Mark Llewellyn ©

Matrix Multiplication (cont.)

• The classic method of multiplying 2 × 2 matrices performs 8
multiplications as follows:

• Strassen discovered a way to carry out the same matrix
product AB using only the following seven multiplications:

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

1111010101110010

1101010001010000

1110

0100

1110

0100

babababa
babababa

bb
bb

aa
aa

AB

()()
()

()
()

()
()()
()()111011017

010000106

1101005

0010114

1101003

0011102

110011001

bbaam
bbaam

baam
bbam
bbam
baam

bbaam

+−=
+−=

+=
−=
−=

+=
++=

COP3530 : Divide-and-Conquer Page 24 Mark Llewellyn ©

Matrix Multiplication (cont.)

• Using these identities, the matrix product is then given by:

• Now consider the case of two n × n matrices where, for
convenience, we’ll assume that n = 2k.

• Strassen’s divide and conquer approach begins by
partitioning the matrices A and B into four (n/2) × (n/2)
submatrices, as follows:

⎥
⎦

⎤
⎢
⎣

⎡

+−++
++−+

=
623142

537541

mmmmmm
mmmmmm

AB

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

1110

0100

1110

0100

BB
BB

B
AA
AA

A

COP3530 : Divide-and-Conquer Page 25 Mark Llewellyn ©

Matrix Multiplication (cont.)

• The product AB can be expressed in terms of eight matrix
products as follows:

• In complete analogy with the 2 × 2 case, the following matrix
multiplications will produce the matrix product AB.

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=
1111010101110010

1101010001010000

BABABABA
BABABABA

AB

()()
()

()
()

()
()()
()()111011017

010000106

1101005

0010114

1101003

0011102

110011001

BBAAM
BBAAM

BAAM
BBAM
BBAM
BAAM

BBAAM

+−=
+−=

+=
−=
−=

+=
++=

7 multiplication operations
10 +/- operations

COP3530 : Divide-and-Conquer Page 26 Mark Llewellyn ©

Matrix Multiplication (cont.)

• As in the case of the 2 × 2 matrices, the matrix product AB is
then given by:

• The complexity of Strassen’s algorithm satisfies the
recurrence:

initial condition T(1) = 1
• By the Master Theorem (see page 8), T(n) ∈ Θ(nlog

2
7).

• Since log2
7 is approximately 2.81, Strassen’s algorithm

provides a matrix multiplication algorithm with complexity
Θ(nlog

2
7) a significant improvement over the Θ(n3) classical

algorithm.

⎥
⎦

⎤
⎢
⎣

⎡

+−++
++−+

=
623142

537541

MMMMMM
MMMMMM

AB

1n),2/n(T7)n(T >=

8 more +/-
operations =
total 18 +/-
operations

COP3530 : Divide-and-Conquer Page 27 Mark Llewellyn ©

Matrix Multiplication (cont.)

• As an aside, you may be interested to know that Winograd
discovered the following set of identities, which leads to a
method of multiplying 2 × 2 matrices using only 15 +/-
operations in addition to the 7 multiplication operations.

• Winograd’s product matrix is given by:

()()

()()
()()
()

()10011100117

11110010016

000111105

011110004

10013

00002

0001110011101

bbbbam
baaaam

bbaam
bbaam

bam
bam

bbbaaam

+−−=
−+−=
−+=
−−=

=
=

+−−+=

⎥
⎦

⎤
⎢
⎣

⎡
+++−++
++++

=
54217421

652132

mmmmmmmm
mmmmmm

AB

7 multiplication
operations and
24 +/-
operations.

NOTE: Only 15
of the +/-
operations are
distinct!

COP3530 : Divide-and-Conquer Page 28 Mark Llewellyn ©

Special Note On Binary Search
• Binary search is often presented (especially in CS2-level texts) as

the quintessential example of a divide-and-conquer algorithm.

• This interpretation is flawed because, in fact, binary search is a
very atypical case of divide-and-conquer.

• According to the definition, the divide-and-conquer technique
divides a problem into several subproblems, each of which need
to be solved. This is not the case for binary search where,
instead, only one of the two subproblems needs to be solved.

• Therefore, if binary search is to be considered as a divide-and-
conquer algorithm, it should be looked on as a degenerative case
of the technique.

• As a matter of fact, binary search fits better into the class of
decrease-by-half algorithms.

