
COP3530 : Brute Force Algorithms Page 1 Mark Llewellyn ©

COP 3530: Computer Science III
Summer 2005

Brute Force Algorithms

School of Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
CSB 242, (407)823-2790

Course Webpage:
http://www.cs.ucf.edu/courses/cop3530/sum2005

COP3530 : Brute Force Algorithms Page 2 Mark Llewellyn ©

What Is A Brute Force Algorithm?
• Brute force is a straightforward approach to solving a

problem, usually directly based on the problem’s
statement and definitions of the concepts involved.

• The “force” implied by the strategy’s definitions is that of
a computer and not that of one’s intellect. “Just do it!”
would be another way to describe the brute-force
approach.

• As an example, consider computing an for a given
number a and a nonnegative integer n.
– By the definition of exponentiation, an = a × a × … × a

n times

COP3530 : Brute Force Algorithms Page 3 Mark Llewellyn ©

Brute Force Algorithms (cont.)

• Can you think of other algorithms that you are familiar
with that use the brute force strategy?
– Bubble Sort

– Selection Sort

–

Algorithm MatrixMult(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])
Input: Two n X n matrices A and B

Output: Matrix C = A × B
for i = 0 to n-1 do

for j = 0 to n-1 do
C[i,j]= 0.0
for k = 0 to n-1 do

C[i,j] = C[i,j] + A[i,k] × B[k,j]
return C

Matrix Multiplication (using algorithm based strictly on
definition of matrix multiplication)

COP3530 : Brute Force Algorithms Page 4 Mark Llewellyn ©

Brute Force Algorithms (cont.)

• Though rarely a source of clever or efficient algorithms, the brute force
approach should not be overlooked as an important algorithm design
strategy for five main reasons.

1. Unlike some of the other strategies that we will see over the course of
this semester, brute force is applicable to a very wide variety problems.

– In fact, it seems to be the only general approach for which it is more difficult to
point out problems that it cannot tackle!

2. For some important problems, such as sorting and searching, brute force
yields reasonable algorithms with some practical value that have no
limitation on instance size.

3. The expense of designing a more efficient algorithm may be unjustifiable
if only a few instances of a problem need to be solved and a brute force
algorithm can solve those instances with acceptable speed.

4. Even if it is too inefficient in general, a brute force algorithm can still be
useful for solving small-size instances of a problem.

5. A brute force algorithm can serve as an important theoretical or
education purpose, e.g., as a benchmark to judge more efficient
alternatives for solving a problem.

COP3530 : Brute Force Algorithms Page 5 Mark Llewellyn ©

Exhaustive Search
• Many important problems require finding an element

with a special property in a domain that grows
exponentially (or faster) with instance size.

• Typically, such problems arise in situations that involve
– explicitly or implicitly – combinatorial objects such as
permutations, combinations, and subsets of a given
set. Many such problems are optimization problems:
they ask to find an element that maximizes or
minimizes some desired characteristic such as a
path’s length or an assignment’s cost.

• Exhaustive search is simply a brute force approach to
a combinatorial problem.

COP3530 : Brute Force Algorithms Page 6 Mark Llewellyn ©

Exhaustive Search (cont.)

• Exhaustive search suggests generating each and
every element of the problem’s domain, selecting
those of them that satisfy the problem’s constraints,
and then finding a desired element (e.g., the one that
optimizes some objective function).

• The assignment problem is one problem to which an
exhaustive search can be illustratively applied.

The assignment problem is one of n people who need to be
assigned to execute n tasks, one person per task (and one task
per person). The cost that would accrue if the i th person is
assigned to the j th task is the quantity C[i,j] for each pair i, j =
1…n. The problem is to find the assignment with the smallest
total cost.

COP3530 : Brute Force Algorithms Page 7 Mark Llewellyn ©

An Assignment Problem Example

Task 4Task 3Task 2Task 1

4967Person 4

8185Person 3

7346Person 2

8729Person 1

COP3530 : Brute Force Algorithms Page 8 Mark Llewellyn ©

An Assignment Problem Example (cont.)

• It is easy to see that an instance of the assignment
problem is completely specified by its cost matrix C.

• In terms of this matrix, the problem calls for a selection
of one element in each row of the matrix so that all
selected elements are in different columns and the
total sum of the selected elements is the smallest
possible.

• Note that no obvious strategy for finding a solution
works here. For example, you cannot select the
smallest element in each row because the smallest
elements may happen to be in the same column. In
fact, the smallest element in the matrix may not be part
of the optimal solution.

COP3530 : Brute Force Algorithms Page 9 Mark Llewellyn ©

An Assignment Problem Example (cont.)

• We can describe a feasible solution to the assignment
problem as n-tuples <j1, …, jn> in which the i th
component indicates the column of the element
selected in the i th row (i.e., the task number assigned
to the i th person).

• For example, using the cost matrix on page 7, the
assignment <2, 3, 4, 1> indicates a feasible
assignment of person 1 to task 2, person 2 to task 3,
person 3 to task 4, and person 4 to task 1.

• The requirements of the assignment problem imply
that there is a one-to-one correspondence between
feasible assignments and permutations of the first n
integers.

COP3530 : Brute Force Algorithms Page 10 Mark Llewellyn ©

An Assignment Problem Example (cont.)

• Therefore, the exhaustive search approach to the
assignment problem would require generating all the
permutations of integers 1, 2,…, n, computing the total
cost of each assignment by summing up the
corresponding elements in the cost matrix, and finally
selecting the one with the smallest sum.

• The solution to our problem instance is shown on the
next page.

COP3530 : Brute Force Algorithms Page 11 Mark Llewellyn ©

An Assignment Problem Example (cont.)

<1, 2, 3, 4> cost = 9 + 4 + 1 + 4 = 18 <2, 1, 3, 4> cost = 2 + 6 + 1 + 4 = 13 (optimal)

<1, 2, 4, 3> cost = 9 + 4 + 8 + 9 = 30 <2, 1, 4, 3> cost = 2 + 6 + 8 + 9 = 25

<1, 3, 2, 4> cost = 9 + 3 + 8 + 4 = 24 <2, 3, 1, 4> cost =2 + 3 + 5 + 4 = 14

<1, 3, 4, 2> cost = 9 + 3 + 8 + 6 = 26 <2, 3, 4, 1> cost = 2 + 3 + 8 + 7 = 20

<1, 4, 2, 3> cost = 9 + 7 + 8 + 9 = 33 <2, 4, 1, 3> cost = 2 + 7 + 5 + 9 = 23

<1, 4, 3, 2> cost = 9 + 7 + 1 + 6 = 23 <2, 4, 3, 1> cost = 2 + 7 + 1 + 7 = 17

<3, 1, 2, 4> cost = 7 + 6 + 8 + 4 = 25 <4, 1, 2, 3> cost = 8 + 6 + 8 + 9 = 31

<3, 1, 4, 2> cost = 7 + 6 + 8 + 6 = 27 <4, 1, 3, 2> cost = 8 + 6 + 1 + 6 = 21

<3, 2, 1, 4> cost = 7 + 4 + 5 + 4 = 20 <4, 2, 1, 3> cost = 8 + 4 + 5 + 9 = 26

<3, 2, 4, 1> cost = 7 + 4 + 8 + 7 = 26 <4, 2, 3, 1> cost = 8 + 4 + 1 + 7 = 20

<3, 4, 1, 2> cost = 7 + 7 + 5 + 6 = 25 <4, 3, 1, 2> cost = 8 + 3 + 5 + 6 = 22

<3, 4, 2, 1> cost = 7 + 7 + 8 + 7 = 29 <4, 3, 2, 1> cost = 8 + 3 + 8 + 7 = 26

COP3530 : Brute Force Algorithms Page 12 Mark Llewellyn ©

Summary of Exhaustive Search
• Since the number of permutations to be considered for the

general case of the assignment problem is n!, exhaustive
search is impractical for all be very small instances of the
problem.

• Fortunately, there is a much more efficient algorithm for this
problem called the Hungarian method after the Hungarian
mathematicians König and Egerváry whose work underlies
the method.

• The good news is that just because a problem’s domain
grows exponentially (or faster) does not necessarily imply
that there can be no efficient algorithm for solving it.

• The bad news is that this problem is more of an exception
from the rule. More often than not, there are no known
polynomial time algorithms for problems whose domains
grow exponentially (assuming an exact solution is required).
It is possible that such algorithms do not exist.

