PAGE
3

COP3530.01, Spring 2001

April 05, 2001

S. Lang

Solution Key to Test #2

1. (a) (10 pts.) Construct the Huffman codes for 4 characters A, B, C, and D, assuming their frequencies are 28, 30, 10, and 24, respectively.

A (28) ----- (58) ----- (92) Huffman’s codes: A – 00; B – 01; C – 10; D – 11.

 (The merge tree is represented with the leaf nodes on the

B (30) -------- left side of the figure, the left branch on top of the right

 Branch for each internal node)

 C (10) ----- (34) --------

 D (24) --------

(b) (5 pts.) If we are constructing the Huffman codes for n characters given their frequencies, give the time complexity of the algorithm with a brief (two lines) explanation.

It takes O(n) time to convert the array of n frequency values into a min-heap. Then we repeatedly delete the next two smallest numbers from the heap, add then insert the sum into the heap, representing an internal node. This process continues until a single value is left. The loop takes O(n) iterations; each iteration takes O(lgn) time, so the total time of the loop is O(nlgn). The codes can be generated by a tree traversal for O(n) time. The algorithm’s total time is O(nlgn).

2. (15 pts.) Suppose a binary min-heap is maintained in an integer array H[1..n]. If the value H[k] is modified to become smaller, 1 (k (n, write in C++ or Java (circle which one you choose) a function that restores the heap property using the following function prototype:

void percolateUp (int k) // assume H[1..n] and n “global”

(See Text for the answer.)

3. Suppose we use a divide-and-conquer strategy to solve a problem that uses an array of size n as input.

(i) Use bn amount of time to divide the problem into two approximately equal- sized subproblems.

(ii) Solve the two subproblems separately using recursion; the recursion terminates when n = 1.

(iii) Use cn2 amount of time to combine the two solutions of Part (ii) into a solution to the original problem.

(a) (8 pts.) Give a recurrence for the time complexity T(n) of the algorithm. No explanation is needed.

T(n) = 2T(n / 2) + bn + cn2
T(1) = constant

(b) (6 pts.)Give a big-O estimate of T(n) using the following Divide-and-Conquer Theorem.

Suppose T(n) = aT(n / b) + O(nk), when n is a power of b, where a(
1, b > 1, and k are constants, and T(n) is non-decreasing. Then the solution to T(n) is given as follows:

[image: image1.wmf]

 EMBED Equation.3 [image: image2.wmf]ï

ï

î

ï

ï

í

ì

<

=

>

=

k

k

k

k

k

a

b

a

n

b

 a

n

n

b

 a

n

n

T

b

if

),

O(

if

),

lg

O(

if

),

O(

)

(

log

Using the Theorem, a = b = 2, k = 2 because

Using the theorem, a = b = 2, k = 2 (because bn + cn2 = O(n2). Since a < bk, so =). Since a = 2 < 4 = bk , we have T(n) = O(n2).

4. (15 pts.) If A[1..100] contains 100 integers. Determine the value or the location of the median of the array in each of the following scenarios (a) – (c), assuming the median means the 50th smallest number. Write your answer in a form that is as precise as possible, such as c (median equals c), A[k] (median equals A[k]), A[k..m] (median in the subarray), or the union of subarrays A[k..m] (A[p..q].

(a) Suppose the array A[1..100] is sorted from large to small.

Median = A[51]

(b) Suppose each value of the subarray A[1..70] equals 5.

Median = 5. This is because suppose median < 5, that would mean there are at least 50 value > 5, the median. However, this is impossible since there are at least 70 values 5 and there are a total of 100 values. Thus, the median is not < 5. Similarly, the median cannot be > 5. Therefore, the median = 5.

(c) Suppose each value of A[1..30] is < A[31], each value of A[71..100] is > A[70], and A[31] < A[70].

The median can be anywhere in the array A[1..100]. For example, when A[1..30] contains all 1’s, A[31] = 3, A[70] = 4, and A[71..100] contains all 5’s. If A[32..69] contains all 3’s, the median = 3, located in the middle section; if A[32..69] contains all 6’s, the median = 5, located in the last section; if A[32..69] contains all 1’s, the median = 1, located in the first section.
5. (21 pts.) Given two arrays A[1..n] and B[1..m], where array A is sorted from small to large but array B is in a random order. We want to merge array B into array A (assuming enough space in A) and result in a single sorted array. There are 3 strategies given blow; in each case express the total number of array element comparisons in a big-O notation and explain briefly.

(a) Insert each element of B[1..m] into A[1..n], using a binary search followed by an insertion into the array pushing the elements forward to make space for each insertion.

O(mlg(n + m)) because there are m insertions of array elements of B[1..m] into array A, while each insertion costs O(lg(n + m)) comparisons using binary search.

(b) Sort B[1..m] using a “fast” sorting algorithm, then merge the sorted B with array A.

O(mlgm) (for sorting array B) + O(n + m) (for merging two sorted arrays of sizes n and m, respectively) = O(n + mlgm).

(c) Convert B[1..m] into a min-heap, then repeatedly call deleteMin() to extract the next smallest number of B and insert into array A using a sequential scan, that is, search from the beginning of A until a proper location is found for insertion, scan A again from this location of A to look for the next location for the second smallest element of B, etc.

O(m) (for conversion into a heap) + O(mlgm) (for calling deleteMin() m times) + O(n) (for scanning array A in a single pass) + O(n + mlgm).

6. Suppose a student taking a test wants to maximize the test score. There are n questions, each question is worth the same number of points but Question i takes T[i] minutes to solve. The total test time is K minutes. No credit will be given for incomplete questions.

(a) (10 pts.) Give an O(nlgn) time greedy strategy that maximizes the test score (i.e., maximizes the total number of completed test questions).

(1) Sort the times in T[1..n] from small to large.

(2) Select the questions in the order as in the sorted array, quit when there is not enough time for completing the next question.

The running time is O(nlgn) because Step (1) takes O(nlgn) time for sorting using, say, heap sort; Step (2) takes O(n) time.

(b) (10 pts.) If each question is worth different number of points, use a small example (n (4) to show that your strategy of Part (a) is not optimal.

Suppose n = 3, K = 3 (minutes test time), T[1..3] = {1, 2, 3} for the question completion times, and P[1..3] = {1, 1, 5} for the number of points. The algorithm of Part (a) chooses Q1 and Q2, completing both and earning 1+1 = 2 points, while the optimal solution would be solving Q3 for 5 points.

(c) (Extra Credit, 10 pts.) Prove your greedy algorithm of Part (a) is optimal (assume equal weights for test questions).

Suppose array T[1..n] is sorted from small to large, so the greedy algorithm chooses questions in the order from 1 to n, quits after p questions, p (n. Suppose an optimal solution (that maximizes the total number of solved questions) chooses questions q1, q2, …, qm. We use induction on k, k (p, to prove that questions 1 through k of the greedy solution are equal to question q1 through question qk of an optimal solution.

(Basis) When k = 1. There are two cases: (Case one) Suppose question 1 (of the greedy solution) is not selected by the optimal solution, i.e., if q1 (1. In this case, we can always replace question q1 by question 1, still having enough time to solve all questions q2, …, qm of the optimal solution, because the time of question 1 is (that of question q1. (Case two) Suppose question 1 is also selected in the optimal solution. We can swap it with question q1, changing their order in the optimal solution. Thus, we proved that there is an optimal solution which chooses question 1 (of the greedy solution).

(Induction) Suppose there is an optimal solution that chooses questions 1 through k of the greedy algorithm’s solution, we want to prove there is an optimal solution that chooses questions 1 through k+1. Suppose the optimal solution’s qk+1 (k+1. Again, there are two cases: (Case one) Suppose question qk+1 is not selected in the optimal solution. In this case, we replace it with question k + 1. This is okay since question (k + 1)’s time is (the time for question qk+1. (Case two) Suppose question k+1 is selected in the optimal solution, but later. We can swap it with the current question qk+1, still having enough time to complete all remaining questions through qm. Thus, we proved that there is an optimal solution that contains all questions 1 through p that are selected by the greedy algorithm. Since the greedy algorithm quits when the test time runs out, so any time remaining after completing question p isn’t enough for solving any more questions. Thus, the greedy solution is indeed optimal.

_1047796278.unknown

_1047796346.unknown

