COP3530C.01, Spring 2001

S. Lang
Partial Key to Practice Problems for Test 2
March 29, 2001
Note: Update on 4/01, with solutions added to Questions 5, 6(b), 7, and 8(a).

Heaps:

1. Exercise 6.2.

2. Exercise 6.10 (a). (Output all values in a binary min-heap T[1..n] that are < X.)

if T[1] (X return

else output T[1]

 repeat the same procedure starting at the root T[2] and at the root T[3] (if these

 child nodes exist)

The time complexity is O(K) where K is the number of such nodes because the above procedure terminates as soon as it reaches a root that has a larger or equal value; thus, the number of nodes that are visited is O(K).

3. Exercise 6.18 (a), (b). (find min, max, and insert in a min-max heap, in which the value of a node at an even depth is smaller than its parent but larger than its grandparent, the value of a node at an odd depth is larger than its parent but smaller than its grandparent.)

(a) Find_min() returns the root; Find_max() returns the larger of the two values at level 1.

(b) To insert a new node X, add it to the end of the array implementing the heap. If this is at an even level, swap with its parent if it is larger than the parent and, after swapping, compare with the grandparent of the current depth, swap again if it is larger, repeat this procedure until done. If insertion into an odd depth, swap with its parent if it is smaller and, after swapping, compare with the current depth’s grandparent and swap again if it is smaller, repeat until done. The time is O(lg n) where n = the number of nodes because the depth is O(lg n).

Sorting and Divide-and-Conquer:

4. Exercise 7.31

Selection_sort is not stable; merge_sort is if the merge function is stable; heap_sort is not stable.

5. Exercise 7.38. (Find the median of two sorted arrays A[1..n] and B[1..n] in O(lgn) time.)

We use recursion to solve the problem based on the following idea: Compare the midpoint value of array A with the midpoint value of array B. If the midpoint of array A is smaller or equal, search the whole A and the left half of B (because the right-half of B cannot contain the median); otherwise, search the left half of A and the whole of B for the median. Terminate the recursion when one of the arrays has one single element and, in this case, a binary search can be used to determine the result.

More precisely, define the following recursive function and make the initial call of search(A[1..n], B[1..n], n) to find the nth smallest element in the two arrays A[1..n] and B[1..n], i.e., find the median of the two arrays.

// search the kth smallest number in the two subarrays A[a..b] and B[c..d]

// combined assuming both are sorted

search (A[a..b], B[c..d], k)

 sizeA = b – a + 1; sizeB = d – c + 1

 if sizeA == 1 then

 apply binary search of A[a] in array B[c..d], determine the kth smallest number

 based on the return location of search

 else if sizeB == 1 then

 apply binary search of B[c] in array A[a..b], determine the kth smallest number

 based on the return location of search

 else // both subarrays have at least two elements

 midA = A[((a+b)/2(] // the middle value of subarray A

 midB = B[((c+d)/2(] // the middle value of subarray B

 if midA (midB then

if k (sizeA/2 + sizeB/2 then

 // search the kth smallest but eliminate the right half of B

 search(A[a..b], B[c..((c+d)/2(], k)

else

 // search the (k– ((a+b)/2()th smallest but eliminate the left half of A

 search(A[((a+b)/2(+1..b], B[c..d], k – ((a+b)/2()

 else // if midA > midB

if k (sizeA/2 + sizeB/2 then

 // search the kth smallest but eliminate the right half of A

 search(A[a..((a+b)/2(], B[c..d], k)

else

 // search the (k– ((c+d)/2()th smallest but eliminate the left half of B

 search(A[a..b], B[((c+d)/2(+1..d], k– ((c+d)/2()

The time complexity of the algorithm can be analyzed as follows: Since each iteration of the recursion eliminates half of one of the two subarrays, starting with two arrays of size n takes O(lgn) iterations for at least one of the subarray to be of size 1. At that point, a binary search takes O(lgn) time to locate the median. Therefore, the total time is O(lgn).

6. Exercise 7.48. (Determine if the sum of two numbers in T[1..n] equals K.)

(a) An O(n2) algorithm:

for i = 1 to n do

 for j = i to n do

 if (T[i] + T[j] == K)

 return true

return false // after the loop

(b) An O(n lgn) time algorithm:

Sort the array T[1..n]

for i = 1 to n do

 search the value (K – T[i]) in array T[1..n] using binary search

 if search succeeds then

 return true // found T[i] + T[j] == K for some T[j]

// after the for loop

return false

The time complexity is O(n lgn) because sorting costs O(n lgn). The for loop runs O(n) iterations, each of which takes O(lgn) time for the binary search procedure, so the total time of the for loop is O(n lgn). Therefore, the total time of the algorithm is O(n lgn) + O(n lgn) = O(n lgn).

7. Application of the Divide-and-Conquer theorem (Theorem 10.6, which will be provided on the test).

(a) Suppose an algorithm’s time complexity T(n) satisfies the recurrence

T(n) = 3 T(n / 2) + c, for some constant c.

In this case, Theorem 10.6 (a = 3, b = 2, k = 0, so a > bk) says T(n) = n(log23) = nlg3.

(b) Suppose an algorithm’s time complexity T(n) satisfies the recurrence

T(n) = 4 T(n / 4) + n.

In this case, Theorem 10.6 (a = b = 4, k = 1, so a = bk) says T(n) = n lgn.

8. (a) Give a sorting algorithm that sorts 3 (distinct) numbers using 3 comparisons in the worst case.

if a < b then

if b < c then

 output a, b, c // sorted from small to large

else

 if a < c then

 output a, c, b

 else

 output c, a, b

else // a (b

if c < b then

 output c, b, a

else

 if c < a then

 output b, c, a

 else

 output b, a, c

Note that the deepest level of nesting involves 3 comparisons.
(b) Prove that any comparison-based sorting algorithm needs at least 3 comparisons to sort 3 (distinct) numbers in the worst case.

One comparison cannot sort 3 numbers because only two numbers have been compared, and there is still one number that has not been looked at so its magnitude is unknown. When two comparisons are used, and if we name the 3 numbers a, b, and c, we can use the following figures to represent the possible outcomes, in which a line connects two compared numbers and the higher number in position indicates a larger value. Notice that only in the second figure, the 3 numbers are sorted. However, since the input can come in any order, there is no guarantee that an algorithm using 2 comparisons would always result in the situation as in the second figure. Thus, two comparisons cannot sort 3 numbers in the worst case.

Greedy Algorithms:

9. Suppose a person is making a travel plan driving from city 1 to city n, n > 1, following a route that will go through cities 2 through n –1 in between. The person knows the mileages between adjacent cities, and knows how many miles a full tank of gasoline can travel. Based on this information, the problem is to minimize the number of stops for filling up the gas tank, assuming there is exactly one gas station in each of the cities. Design a greedy algorithm to solve this problem and analyze its time complexity.

(1) fill up the gas tank in City 1

(2) for c = 2 to n –1 do

// decide whether to stop in City c for gas while approaching

(2.1) if there is still enough gas to go to City (c+1) then

 don’t stop in City c

(2.2) else

 fill up the gas tank in City c

It can be proved that this greedy algorithm minimizes the number of gas stops. The time complexity is O(n) because the loop in Step (2) runs O(n) iterations in which each iteration uses O(1) time (in Steps (2.1) and (2.2)).

10. A student taking a test uses greedy strategies to maximize the test results. The input to this problem consists of the test time K in minutes, and the (estimated) times to solve each of the n questions on the test, T[1..n], where time T[i] > 0 is the time in minutes for solving question i, 1 (i (n. We assume no partial credits will be given; thus a completed test question gets full credits while incomplete answers get 0 credits. We also assume that
[image: image1.wmf]K

i

T

n

i

>

å

=

1

]

[

so that there is not enough time to solve all test questions. There are two greedy strategies being considered:

(a) Maximize the total number of completed test questions by working on the longest test question first, then the second longest, etc. Give a “small” example (i.e., n (4) to show that this strategy is not optimal.

Consider K = 5, n = 3, T[1..3] = {4, 3, 2}. Thus, this greedy strategy chooses Question 1 but will not have enough time to do any more questions. However, the optimal solution chooses Question 2 and 3 (and finishing both in time).

(b) Maximize the total amount of time the student uses for the completed test questions, by working on the shortest test question first, then the second shortest, etc. (Thus, a student could be busy but receives no credits if no test questions are completed.) Does this algorithm (always) generate optimal solutions? Use an example to illustrate.

Consider K = 7, n = 3, T[1..3] = {2, 3, 4}. The greedy strategy chooses Question 2 and 3 but has not enough time for Question 3, so its “busy” time is 2 + 3 = 5. However, the optimal solution chooses Questions 2 and 3 using time 3 + 4 = 7.

c

b

a

c

b

a

c

b

a

_1047193467.unknown

