PAGE
2

COP3530.01, Spring 2001

April 20, 2001

S. Lang

Partial Solution Key to Quiz #2

1. Suppose an undirected graph G = (V, E) is represented in its adjacency lists structure, see the following figure for the graph and its representation.

(b) (8 pts.) Write in C++ or Java (circle which one!) to implement the breadth-first-search (BFS) method, assuming a FIFO queue class Queue (of integers) is available which contains the following methods:

Queue(): a constructor for an empty Queue object.

boolean isEmpty(): a method that tells if a Queue object is empty (true) or not (false).

void add(int x): add integer x to the end of the Queue object.

int remove(): remove and return the first integer at the front of the Queue object (throw an exception if the Queue is empty).

Your void BFS(int x) method should print out the node numbers as they are being visited, starting at node x. You may assume int n gives the number of nodes, and array adjLists[1..n] gives the adjacency lists structure. Specify any additional data structures you may need.

 (Consult the text and the notes for the BFS function.)

2. (10 pts.) Suppose you have n dollars to spend on buying gifts. There are m possible gifts to choose from, the costs of the gifts are stored in an integer array C[1..m], i.e, we assume gift i costs C[i] dollars. The problem is to find a way to buy a maximum number of gifts while within your budget of n dollars. (Each gift can only by purchased once.) We propose the notation N[i, j] to mean the maximum number of gifts that can be purchased with j dollars, when the gifts are chosen from gifts 1 through i. We (or you) develop a dynamic programming solution as follows:

(a) (2 pts) Specify the boundary conditions for the N[i, j] notation when i = 1, or when j = 0.

(Explanations are included below for your reference.)

N[1, j] = 1 when j (C[1]; 0 otherwise. That is, we can buy at most one gift (number 1) if the amount of money j is (the cost of the gift C[1]; otherwise, if j < C[1], we can buy 0 gifts.

N[i, 0] = 0 because 0 dollars can buy no gifts.

(b) (3 pts.) Give a recurrence for N[i, j] and justify your recurrence. (We assume each gift can be purchased at most once.)

If i > 1 and j > 0, then

N[i, j] = max(N[i – 1, j], N[i – 1, j – C[i]] if j – C[i] (0)

That is, in the optimal solution N[i, j], either gift i is not included; or it is included. In the first case, the optimal solution would be the same as that of choosing among the first i – 1 gifts using j dollars. In the second case, the optimal solution N[i, j] spends C[i] dollars buying gift i, with the remaining amount j – C[i] constituting an optimal solution to buying among the first i – 1 gifts (an application of the principle of optimality). The second case applies only if j – C[i] (0.

(c) (5 pts.) Give a pseudocode description of an algorithm which computes N[m, n] using the dynamic programming technique, i.e., a tabular, bottom-up approach. Show the analysis of both the time and space complexities.

(1) Declare a 2-dimensional array N[1..m][0..n], and initialize it as described in (a), i.e.:

for 0 (j (m, set N[1, j] = 1 when j (C[1]; 0 otherwise.

set N[i, 0] = 0 for 1 (i (n.

(2) for i = 2 to m do

for j = 1 to n do

(2.1)
 if j – C[i] (0 and N[i – 1, j – C[i]] > N[i – 1, j] then

 N[i, j] = N[i – 1, j – C[i]]

(2.2)
 else

N[i, j] = N[i – 1, j]

Step (1) of the algorithm takes time O(m) + O(n); Step (2) takes time O(mn) because there are a total of O(mn) iterations in which each iteration (2.1) and (2.2) take O(1) time. Thus, the total time is O(m + n + mn) = O(mn). The space complexity is O(mn) if the 2-dimensional array N[1..m][0..n] is used, but the space complexity can be reduced to O(n) if two most recent rows of the array are kept during the execution of the algorithm

1

5

6

4

3

4

2

1

3

2

Graph G:

5

6

6 1

3 1

(a) (2 pts.) If a depth-first-search procedure (DFS) is called starting at node 2, show the order in which the nodes will be visited (show when each node is visited the first time during DFS):

2 3 (return to 2) 1 4 6 (return to 4) (return to 1) 5 (return to 1) (terminate at 1)

4

1

2

4 5 2

Adjacency lists:

