PAGE
2

COP3530.01, Spring 2001

March 6, 2001

S. Lang

Solution Key to Quiz #1

Suppose a binary min-heap consisting of integer values is implemented using array T[0..n] in which location T[0] is left unused and locations T[1] through T[n] store the n integer values in the heap, n (1. Now answer each of the following questions:

1. (10 pts.)

(a) How many leaf nodes does the heap have? Write your answer (as a formula) in terms of n, and give a brief explanation. (A node is a leaf node if it has zero child nodes.)

The last node’s index is n, so its parent’s index is (n/2(and this is the non-leaf node with the highest index. Thus, there are (n/2(non-leaf nodes, so the number of leaf nodes is n – (n/2(= (n/2(.

(b) Give the time complexity in terms of n for each of the following operations (no explanation needed):

findMin() – O(1).

deleteMin() – O(lg n).

findHeight() – O(lg n) by starting with value n, keep halving it while it is > 1; the number of iterations is the tree height.

findSecondSmallest() – O(1) because the second smallest will be between values T[2] and T[3].

2. (10 pts.) Write a Java method or C++ function search(int x) (circle which language you use) that searches the heap for the given integer value parameter x, and returns the index where x is found or returns 0 otherwise. You may include other parameters as appropriate. The method should take advantage of the min-heap property as much as possible. For example, if x < T[1] the method should return immediately with value 0. Briefly analyze the time complexity of your code in terms of array size n. (Hint: Use recursion so that if a search doesn’t terminate at a node, try searches starting at both subtrees of the node. You need to add more parameters to the method to support recursion.)

// call the method search(T, 1, n, x) to get it started;

// it searches the subtree rooted at s looking for x, where t[1..n] stores the heap

int search(int [] t, int s, int n, int x)

{

if (s > n || x < t[s]) // s out of bound or x is definitely not here

 return 0;

else if (x == t[s]) // found at current root s

 return s;

else // search both subtrees of node s

{

 int r = search(t, 2*s, n, x); // search left subtree first

 if (r != 0)

 return r;

 else // search right subtree

 return search(t, 2*s+1, n, x);

}

}

The worst-case time complexity is O(n) because the number x being searched may be larger than everything in the heap, in which case the function search() terminates only after searching through all nodes of the tree.

