COP3530C.01, Spring 2001

S. Lang
Solution Key to Assignment #5 (40 pts.)

March 29, 2001
1. (10 pts.) Exercise 10.3. (The binary merge tree is drawn sideways, so that the “left” branch is above the “right” branch in the following figure.)

2. (10 pts) Exercise 10.2, Part (a).

A greedy strategy that maximizes the total earning (in dollars) selects the job with the highest earning first, with the second highest earning next, etc, if the jobs can be completed by their respective deadlines. More precisely, the following is the algorithm:

(1) Sort the jobs based their earnings from high to low, breaking ties with the deadlines by placing smaller (earlier) deadlines at the front. After sorting, we assume array d[1..n] contains the earnings (in dollars) of the jobs 1 through n, and array t[1..n] contains the deadlines for the corresponding jobs. (Thus, job 1 earns d[1] dollars if completed by time t[1], etc.) Note that we may assume each deadline value is (n because each job takes one time unit to complete, so n jobs cannot take more than n time units. Therefore, we may replace any value in array d[1..n] which is larger than n by value n.

(2) Find the maximum deadline in array t[1..n], call it max. Create an array p[1..max] and initialize to zero values. The purpose of the p array is to record when the jobs are scheduled in the time slots; thus, if p[k] = j > 0, job j is being completed in time slot k.

(3) for j = 1 to n do // select the jobs in order of their earning values

(3.1) if there is a free time slot from time d[j] towards time 1, call the first such slot k, then

 assign job j to slot k (i.e., set p[k] = j).

(3.2) else skip job j, do nothing

// at the end, array p[1..max] tells which jobs are completed and during which time slot.

The time complexity is O(n2) because Step (1) takes O(n lgn) time; Step (2) takes O(n) time. Step (3) runs O(n) iterations and, in each iteration, Step (3.1) takes O(n) time, so the total time of Step (3) is O(n2). Therefore, the total time of the algorithm is O(n) + O(n lgn) + O(n2) = O(n2).

3. Design an algorithm in pseudocode and analyze its time complexity for each of the following problems given a graph G as the input if (a) G is represented using an adjacency matrix, and (b) G is represented using the adjacency lists. You may assume the graph has no parallel edges.

(i) (10 pts.) Output the degree of each node, where the degree counts the number of edges that are connected to the node. (By convention, when a node is connected to a self-loop, the edge contributes 2 to the node’s degree.)

(a) Suppose the graph is represented by an adjacency matrix A[1..n][1..n].

for i = 1 to n do

 // calculate degree for node i
 deg = 0

 for j = 1 to n do // sum up the one’s in row i
 deg += A[i][j]

 deg += A[i][i] // self-loop counts 2 for degree

 output deg as node i‘s degree

The time complexity is O(n2) because the inner for loop requires O(n) time for each iteration of the outer loop, which runs O(n) iterations.

(b) Suppose the graph is represented by the adjacency lists L[1..n].

(1) for i = 1 to n do

 // calculate degree for node i
(1.1) deg = 0

(1.2) for each node in the list at L[i]

 deg++

 if the node in the list is for a self-loop at node i then

 deg++ // self-loop counts 2 for degree

 (1.3) output deg as node i‘s degree

The time complexity is O(n + e) where e = the number of edges. This is because the for loop runs O(n) iterations; thus, the total amount of time of steps (1.1) and (1.3), each of which is O(1), will be O(n) for all iterations. Further, the total amount of time for Step (1.2) from all the iterations of the outer loop, will be O(e) because the loop (1.2) traverses through the nodes in the adjacency lists which have O(e) nodes (actually, exactly 2e nodes because each edge is represented twice). Thus, the total time of the code is O(n) + O(e) = O(n + e).

(ii) (10 pts.) For an arbitrary node j and node k, determine if there is a path that connects node j to node k.

Given the graph represented either by an adjacency matrix or by the adjacency lists. The following function determines if there is a path connecting node j to node k:

 (1) initialize an array visited[1..n] to false values

 (2) visited[j] = true // start searches from node j
 (3) call dfs(j) // visit all nodes connected to node j; a call to bfs(j) will work equally well

 (4) output visited[k] // a true means node k is connected to node j; false otherwise

 Time complexity analysis:

 (a) Suppose the graph is represented by the adjacency lists.

In this case the time is O(n + e) because Step (1) takes O(n) time, Steps (2) and (4) each take O(1) time; the dfs() call takes O(n + e) time, so the total time is O(n + e).

(b) Suppose the graph is represented by the adjacency matrix.

Similar to the previous case, Step(1) takes O(n) time, Steps (2) and (4) each take O(1) time. However, dfs() (or bfs()) takes O(n2) time because in traversing through the edges connected to a node i, each entry of row i of the matrix is examined (whether it is a 0 or a 1), requiring a total of O(n2) time because there are O(n2) entries in the matrix. Thus, the total time of the algorithm is O(n2).

Huffman codes:

‘:’: 000001

‘ ‘: 001

‘\n’: 00001

‘,’: 11

‘0’: 011

‘1’: 0100

‘2’: 00011

‘3’: 000000

‘4’: 1000

‘5’: 0101

‘6’: 00010

‘7’: 1001

‘8’: 1010

‘9’: 1011

 ‘3’ 59 ------ 159 ------ 259 ------- 609 ------- 1214 ------- 2137 ------ 3648

 ‘:’ 100

‘\n’ 100

 ‘6’ 174 ------ 350 ----------------------

 ‘2’ 176

 ‘ ‘ 605

 ‘1’ 242 ------- 492 ------ 923 ------------------------------------

 ‘5’ 250

 ‘0’ 431

 ‘4’ 185 ------- 384 ----- 806 ------ 1511 -------------------------------------

 ‘7’ 199 ----------

 ‘8’ 205 ------- 422 --------

 ‘9’ 217 ----------

 ‘,’ 705 ----------------------------------

