COP3530C.01, Spring 2001

S. Lang
Solution Key to Assignment #1 (40 pts.)

1/28/01

1. (12 pts.) Exercise 2.2 of the Text, do all parts and provide explanations as precisely as possible. That is, give a proof for each “yes” answer, give a counter example for each “no” answer.

Suppose T1(n) = O(f(n)) and T2(n) = O(f(n)).

(a) (3 pts.) Prove T1(n) + T2(n) = O(f(n)).

(Solution one) Since T1(n) = O(f(n)) by assumption, there exist constants c, k such that T1(n) (c f(n) when n (k. Similarly, there exist constants c’, k’ such that T1(n) (c’f(n) when n (k’. When n (max(k, k’), adding the two inequalities yields T1(n) + T2(n) ((c + c’)f(n), which implies T1(n) + T2(n) = O(f(n)).

(Solution two) T1(n) + T2(n)
= max(O(f(n)), O(f(n))), using Rule 1 of the Text

= O(f(n)).

(b) (3 pts.) Disprove T1(n) – T2(n) = o(f(n)) (the little-o).

We define a counter example as follows: Let T1(n) = 2n, T2(n) = n, and f(n) = n. Thus, T1(n) = O(f(n)) because T1(n) = 2f(n); T2(n) = O(f(n)) because T2(n) = f(n). However, since

[image: image1.wmf],

1

lim

)

(

)

(

)

(

lim

2

1

=

=

-

¥

®

¥

®

n

n

n

f

n

T

n

T

n

n

 so T1(n) – T2(n) (o(f(n)).

(c) (3 pts.) Disprove
[image: image2.wmf]O(1).

)

(

)

(

2

1

=

n

T

n

T

We define a counter example as follows: Let T1(n) = n2, T2(n) = n, and f(n) = n2. Thus, T1(n) = O(f(n)) because T1(n) = f(n); T2(n) = O(f(n)) because T2(n) = n (n2 = f(n). However,
[image: image3.wmf],

)

(

)

(

2

2

1

n

n

n

n

T

n

T

=

=

and n (O(1) because n is not bounded by any constant.

(d) (3 pts.) Disprove T1(n) = O(T2(n)).

We define a counter example as follows: Let T1(n) = n2, T2(n) = n, and f(n) = n2. Thus, T1(n) = O(f(n)) because T1(n) = f(n); T2(n) = O(f(n)) because T2(n) = n (n2 = f(n). However, T1(n) (O(T2(n)) because, if T1(n) = O(T2(n)) were true, that is, if n2 = O(n), we show this leads to a contradiction. From n2 = O(n), there exist constants c, k such that n2 (cn when n (k. That is, n (c for n (k. This is false when choosing n = max(c + 1, k).

2. (8 pts.) Exercise 2.14 of the Text (Horner’s rule for polynomial evaluation).

For a polynomial f(x) = (ni=0 ai xi where the coefficients a0, a1, …, an, are stored in an array a[0..n], and x is given an input value, Horner’s rule of evaluating f(x) runs as follows:

Set poly = 0

For i = n downto 0

 ploy = x * poly + a[i]

(a) (3 pts.) Show the steps of Horner’s rule for x = 3, f(x) = 4x4 + 8x3 + x + 2.

First, poly = 0, and array a[0..4] = {2, 1, 0, 8, 4}.

After iteration 1, poly = x * 0 + a[4] = 4.

After iteration 2, poly = x * 4 + a[3] = 3*4 + 8 = 20.

After iteration 3, poly = x * 20 + a[2] = 3*20 + 0 = 60.

After iteration 4, poly = x * 60 + a[1] = 3*60 + 1 = 181.

After iteration 5, poly = x * 181 + a[0] = 3*181 + 2 = 545.

(b) (3 pts.) Explain why Horner’s rule works (for polynomial evaluation).

In general, after iteration 1, poly1 = an; after iteration 2, poly2 = x an + an–1; after iteration 3, poly3 = x(x an + an–1) + an–2 = x2 an + x an–1 + an–2; the next iteration multiplies the previous value of poly then adds the next coefficient, i.e., ploy4 = x(x2 an + x an–1 + an–2) + an–2, = x3 an + x2 an–1 + xan–2 + an–3; etc. Thus, after n+1 iterations, polyn+1 = xn an + xn–1 an–1 + … + a0, which is the correct value.

(c) (2 pts.) What is the running time of Horner’s rule?

The algorithm runs (n+1) iterations, in which each iteration costs O(1) time (one multiplication, one addition, and one assignment operations). There is one initialization step of O(1) time before the loop. Thus, the total time complexity of Horner’s rule is O(n), where n is the degree of the polynomial.

3. (8 pts.) Consider an array implementation of polynomials (of a single variable x) with integer coefficients, in which only the non-zero terms are stored in the array. Specifically, if the non-zero terms of a polynomial are written in decreasing order of the exponents,
[image: image4.wmf],

...

1

1

0

1

1

0

-

-

+

+

+

n

m

n

m

m

x

a

x

a

x

a

where each coefficient ai (0, and m0 > m1 > … > mn–1, use an array of size 2n to store the (coefficient, exponent) pairs. (For example, the polynomial, 5 x11 + 3 x6 –10 x3 + 6, is stored in an array A[0..7] = {5, 11, 3, 6, –10, 3, 6, 0}.) Suppose the input contains such an array A[0..2n–1] of 2n integers representing a polynomial of n non-zero terms, and an integer value x. Write an algorithm to evaluate the polynomial at the given x value, based on a single-pass loop through the array evaluating each term aixi using the exponentiation function described in the Text. You should write the algorithm in a pseudocode, and analyze the time complexity of your algorithm in terms of the input parameters n and m0 (m0 being the largest exponent).

(4 pts.) Algorithm for polynomial evaluation:

Input: an integer value x; and an array A[0..2n–1] consisting of the coefficient, exponent pairs of the non-zero terms of a polynomial, in decreasing order of the exponent values.

Output: val = the value of the polynomial evaluated at x.

Method:
Set val = 0

Set n = number of non-zero terms, i.e., (size of array A) / 2

For i = 0 to (n –1)

 val += A[2*i] * pow(x, A[2*i + 1]) // call the exponentiation function pow() of Text

(4 pts.) Analysis of time complexity:

The first two lines cost O(1) time. The loop runs n iterations, in which each iteration calls the function pow() once and does O(1) amount of work based on the returned value of pow(). Since the time complexity of pow() is O(lg (exponent value)) in each call (see the text for analysis), and the maximum exponent of the polynomial is m0, so each iteration of the loop costs O(1) + O(lg m0) = O(lg m0) time. Thus, the overall time of the algorithm is O(1) + O(n lgm0) = O(n lgm0).

4. (12 pts.) Given an array A[0..n–1] containing n integers, n (1. Write an algorithm to output the maximum and the minimum values in the array using each of the following two ideas:

(a) Set max = min = A[0]. Loop through each of the remaining locations of array A comparing each against the current max and min, resetting them if necessary.

(b) Divide the array A into two halves. (In case n is odd, the first half has one more element than that in the second half.) Find the max and min of the two halves, respectively, based on the straightforward method of Part (a). (Thus, there is no recursion here.) Then, compare the two max’s and two min’s, respectively, to determine the overall max and min for the entire array.

In each part, write the algorithm in a pseudocode and calculate precisely the number of “element comparisions” used in the algorithm in the worst case (i.e., count comparisons involving two array elements, such as A[i] < A[j], max1 > A[i], etc.). In part (b), you may want to distinguish the two cases: n being even and n being odd.

(a) (3 pts.) Use algorithm one to output max and min, using A[0..n–1] as input:

Set max = min = A[0]

For i = 1 to (n –1)

 If A[i] > max

Set max = A[i]

 Else if A[i] < min

Set min = A[i]

(2 pts.) Calculate the number of element comparisons (in the worst case):

The algorithm runs (n –1) iterations, in which each iteration uses 2 comparisons in the worst case (this worst case actually happens if the array contains distinct numbers in descending order). Thus, the total number of element comparisons is 2(n –1) in the worst case.

(b) (4 pts.) Use algorithm two to output max and min, using A[0..n–1] as input:

Use algorithm one (in Part (a)) to determine the maximum and minimum values of the subarray A[0..m–1)], where m = ((n+1)/2(, storing the results in max1 and min1, respectively.

Next, use algorithm one to determine the maximum and minimum values of the subarray A[m..n–1)], where m = ((n+1)/2(, storing the results in max2 and min2, respectively.

Compare max1 and max2 and set max to the larger.

Compare min1 and min2 and set min to the smaller.

(3 pts.) Calculate the number of element comparisons (in the worst case):

Using algorithm one in Step one requires 2(m –1) comparisons based on the analysis of Part (a), since the size of the subarray of this step is m. Similarly, using algorithm one in Step two requires 2(n – m –1) comparisons since the size of the second subarray is (n – m). Finally, two comparisons are used to determine the overall maximum and minimum values (in the last two steps). Thus, the total number of comparisons (in the worst case, of course), is 2(m –1) + 2(n – m –1) + 2 = 2(n –1).

Note: If algorithm two uses recursion, i.e., when the array is divided into two halves, find their max and min recursively using the same method, and if the recursion terminates at n =1 (no comparison is needed) and n = 2 (using one comparison), the total number of comparisons satisfies the recurrence T(1) = 0, T(2) = 1, and T(n) = T((n/2() + T((n/2() + 2 for n (2. In that case, it can be proved that T(n) lies between 3n/2 – 2 and 5n/3 – 2; thus, it is always better than the time of algorithm one (which uses 2n – 2 comparisons).
_1042160646.unknown

_1042160662.unknown

_1042160612.unknown

_1041024307.unknown

