COP3530C.01, Spring 2001

Assigned: April 10, 2001

S. Lang
Assignment #6 (40 pts.)
Due: April 19, within10 min. of the lecture at 11:30 am

Note: Two places highlighted in boldface were added after class on Tuesday, 4/10.

The main objective of this programming assignment is to implement a Graph class that supports both the adjacency matrix and adjacency lists representations, and to implement a few well-known graph algorithms. The instructor will provide a Java main() method and a C++ main() function which call your Java graph methods (or C++ functions) for testing your program. The graph data files for testing your program will also be provided by the instructor. Your Graph class must satisfy the following requirements:

(1) There are three private instance variables (or member variables) for representing each directed or undirected graph:

(a) int numNodes: for the number of nodes (vertices) in the graph; the nodes of a graph are labeled 1 through numNodes (for example, nodes 1, 2, and 3 if numNodes = 3).

(b) int adjMat[][]: an adjacency matrix whose dimension is based on numNodes in which each entry stores the weight value of the corresponding edge.

(c) Node * adjLists[]: an adjacency list structure which is an array (of size numNodes) of linked lists of Node objects, where a Node object consists of an integer node number, an integer weight value, and a link to the next Node object. You need to define a separate Node class.

(2) There are two constructors for reading text files representing both directed and undirected graphs into the class:

(a) Graph(String fileName): The parameter fileName is the name of a text (ASCII) file representing an undirected graph in the following format: there is a leading positive integer n (for the number of nodes of the graph) followed by an unknown number of edges and their weights in the form of a b c where a and b are node labels (numbers), c a positive integer weight associated with edge (a, b). For example, an undirected graph of 3 vertices with identical edge weights of 1 which looks like a triangle is represented as 3 1 2 1 1 3 1 2 3 1. The values in the file are separated by at least one space or by the new line character. Note that since the graph is undirected, each edge should be represented “twice” in the adjacency matrix (e.g., edge 1 2 of weight 1 is also represented as edge 2 1 of the same weight 1.)

(b) Graph(String fileName, String “d”): The parameter fileName is the name of a text file of the identical format as in Part (a). The only difference is that each edge input a b c represents a directed edge (a, b) of integer weight c; it doesn’t imply the existence of the opposite edge (b, a) unless it is also present in the input file.

Note that after input (construction), each graph (directed or undirected) is represented internally in both the adjacency matrix and adjacency list structures.

(3) You need to implement the following 3 graph algorithms as instance methods (or C++ member functions) of the Graph class:

(a) void numOfPaths(int k): a method invoked by directed or undirected graph to compute the number of (directed or undirected) paths of length k between any pair of nodes; this method computes the kth power of the adjacency matrix, then outputs the entries of the computed matrix to the screen (standard output device). (Thus, if A is the adjacency matrix, A3 [i][j] gives the number of paths of length 3 from node i to node j.)

(b) boolean dfs(int i, int j): a method invoked by directed or undirected graph to determine if there exists a path (directed or undirected as appropriate) from node i to node j; this method should be implemented using the adjacency lists structure of the graph.

(c) void shortestPath(int i, int j): a method that implements Dijkstra’s shortest paths algorithm to compute and output to the screen a shortest path from node i to node j; this method can be invoked by either directed or undirected graph and must be implemented using the adjacency matrix representation.

(4) (5 points of extra credit) Implement a method void EulerPath() for undirected graphs which outputs a path (if exists) that traverses each edge exactly once (such a path is called an Euler path); the necessary and sufficient condition for the existence of an Euler path is that all vertex degrees are even or there are exactly two odd degrees. (An algorithm for computing Euler path using the adjacency lists structure is in Section 9.6.3 of the Text.)

Similar to previous assignments, be sure to include comments within your program and prepare your program on a floppy disk and in hardcopy form including the screen outputs. Turn in all relevant materials in an envelope and mark on the envelope which language (Java or C++) you are using. On a separate sheet, indicate the language environment, whether you have done the extra-credit algorithm, and other special instructions you feel necessary for the graders.

