COP3530C.01, Spring 2001

Assigned: March 5, 2001

S. Lang
Assignment #4
Due: March 22, within10 min. of the lecture at 11:30 am

(Note added 3/07/01: the method signedArea() is slightly modified so it uses two parameters.

Two additional remarks added 3/08/01.)

You are to write a program in C++ or in Java that implements a few functions related to polygons in 2-dimensional plane consisting of points with positive integer coordinates. (In principle, algorithms and techniques described in the following can be applied to points of arbitrary real number coordinates.) There are several terms and facts you need to understand first. The 2-dimensional plane is specified by a coordinate system, in which a horizontal axis (known as the x-axis) and a vertical axis (the y-axis) intersect at the point called the origin. Each point p in the plane is then identified with a pair of real numbers (x, y), known as the x- and y-coordinates, respectively, in which x = (+ or –) distance from p to the y axis, and y = (+ or –) distance from p to the x axis. The signs of the coordinates are determined so that the points to the right (left) of the y axis have positive (negative) x coordinates; points above (below) the x axis have positive (negative) y coordinates. The area in which both x and y coordinates are positive is called the first quadrant, which is where your program is concerned with. (See Fig. 1.)

From geometry, we know two distinct points p, q determine a unique line. We use the notation
[image: image1.wmf]pq

 to denote the line segment (the portion of the line) from point p to point q. (Be aware of the direction of a segment.) A sequence of n distinct points p1, p2, …, pn, n (3, determine a polygon consisting of the region enclosed by line segments
[image: image2.wmf].

and

,

...,

,

,

1

1

3

2

2

1

p

p

p

p

p

p

p

p

n

n

n

-

The points p1, p2, …, pn are called the vertices of the polygon. A region is called convex if for every two points p, q inside the region, the line segment
[image: image3.wmf]pq

is entirely contained inside the region. (See Fig. 2.) The convex hull of a polygon is the smallest convex region that contains the given polygon. It is a simple fact to see that the convex hull of a polygon is determined by identifying a subset of the vertices that enclose a smallest convex region containing the given polygon; these vertices are called the extreme points of the polygon. (See Fig. 2.)

[image: image17.wmf]3

1

p

p

[image: image18.wmf]3

1

p

p

The purpose of this assignment is to compute the convex hull for any given polygon. A class named PolyPoint will be provided for the abstraction of 2-dimensional points (of integer coordinates) with the following instance variables and methods (data members and member functions in C++):

(1) Two private integer variables for the x- and y-coordinates of the PolyPoint object.

(2) A constructor of two integer parameters that returns a PolyPoint object with the corresponding coordinates.

(3) A copy constructor for PolyPoint, that is, it returns a PolyPoint object with identical coordinates as that of the input PolyPoint parameter.

(4) A getX() and getY() methods that return the x- and y-coordinates of the PolyPoint object, respectively.

(5) A method named signedArea(PolyPoint p1, PolyPoint p3) that uses the invoking object (call it p2) as the anchor and returns an integer value (positive, zero, or negative) which is the (+ or –) area of the parallelogram determined by the two segments
[image: image4.wmf]3

2

1

2

and

p

p

p

p

. The value is positive if the angle measured counter-clockwise from segment
[image: image5.wmf]1

2

p

p

to segment
[image: image6.wmf]3

2

p

p

 is < 180 degrees; it is negative if the angle is > 180 degrees; zero if the three points p1, p2, and p3 are collinear (i.e., lying on the same line). When this signedArea() value is positive, we say point p3 is to the left of segment
[image: image7.wmf]1

2

p

p

; if the value is negative, we say point p3 is to the right of segment
[image: image8.wmf]1

2

p

p

. (See Fig. 3.)

The Java file is named PolyPoint.java; the C++ files are PolyPoint.h and PolyPoint.cpp. Your program is to read a sequence of polygons and computes the convex hull for each. The following descriptions provide detailed specifications and requirements for your program:

(1) Each polygon is input from the keyboard, starting with an integer n followed by n pairs of integer values for the x- and y-coordinates of n 2-dimensional points. These integer values may span several lines, and there may be several polygons for the input. A leading zero value for n terminates the input (and the program). For example, an input stream of 2 polygons (one triangle and one quadrilateral) may be 3 1 1 5 2 3 3 4 5 1 3 2 3 4 1 1 0. In this case, the quadrilateral is non-convex. You may assume there are no input errors; that is, all integer coordinates are positive, no miscount, and no intersecting segments within a polygon.

(2) Implement a Polygon class which uses an array to store each input polygon; the array size is determined based on the leading input value n for each polygon.

(3) In the Polygon class, implement a method (function) isConvex() that determines if the polygon object (stored in the array) is convex or not, based on the following slow O(n4) algorithm, where n is the number of points in the polygon: For each possible triangle formed by the polygon vertices (a triple-level nested loop), test if each of the n points lies inside of the triangle. Testing if a point q lies inside a triangle abc can be done by testing if q is on the same side of segments
[image: image9.wmf]ca

bc

ab

and

,

,

(or on a segment). Output an appropriate message for each polygon input.

(4) In the Polygon class, implement a method (function) convexHull() which computes the convex hull for the given Polygon object, and outputs the line segments of the hull. The algorithm, known as Graham’s scan, consists of the following steps:

(a) For the n vertices, find the point with the smallest y coordinate. When there are more than one such point, use the one with the smallest x coordinate. Call this point p0, the others p1 through pn–1. This step takes O(n) time.

(b) Reorder the points p1 through pn–1 so that point p2 is to the left of segment
[image: image10.wmf]1

0

p

p

, p3 is to the left of segment
[image: image11.wmf]2

0

p

p

, …, p n–1 is to the left of segment
[image: image12.wmf]2

0

-

n

p

p

. (See Fig. 3.) This can be accomplished by modifying a sorting procedure (say, Selection Sort) using the return value of the signedArea() method for comparisons. This step takes O(n lg n) time if a fast sorting algorithm is used. (Selection sort obviously takes O(n2) time.)

(c) After sorting (the previous step), create another array of the same size (a Polygon object), then scan the remaining points in order by using a ray anchored at point p0 sweeping counter-clockwise through the segments
[image: image13.wmf].

...,

,

,

1

0

2

0

1

0

-

n

p

p

p

p

p

p

 First copy points p0, p1, and p2 to the new array. Each scan involves 3 successive points pk, pk+1, and pk+2, k (1, we copy the new point pk+2 but eliminate previous point pk+1 if point pk+2 is to the right of segment
[image: image14.wmf].

1

+

k

k

p

p

 (In that case, the point pk+1 is an interior point so it is eliminated.) Use the two most recent points in the new array and the next point pk+3 for the nest scan. (This is why we use two arrays here.) Output the convex hull (the second Polygon object) after the scan is complete. This step takes O(n) time. (See Fig. 3.)

Your program must implement a main() method which reads the input as specified above and produces two results for each polygon (one from isConvex() the other from convexHull()). The main() terminates when it reads a leading zero value. Testing and program documentation, preparation are similar to that used previously:

(a) Test and run your program in one of the following programming environments (and only these): Microsoft Visual C++ or g++ (on Olympus) for C++ code; JBuilder or JDK 1.2 (or higher) for Java code. An input data file will be provided later.

(b) Turn in a hardcopy of the source code (all necessary files including those from the Text) with proper documentation, and a hardcopy of the output file. Also, turn in a floppy disk containing the program files and only those. On a separate sheet specify the programming environment you used and the steps you did for compiling and running your program. Put all your materials in a brown envelope with your name and social security number, and whether you use C++ or Java, printed on the front.

(c) Do not email your program files to the instructor or to the TAs; such emails will be discarded without any consideration.

Additional Remarks (added 3/8/01):

(1) There are several scenarios when the call p2.signedArea(p1, p3) returns a zero value, where p1, p2, and p3 are PolyPoint objects:

(2) When performing the 2nd phase of Graham’s scan (Step (c) and Fig. 3, after the points have been arranged in a counter-clockwise fashion, i.e. sorted), if when testing the next point being to the right of two previous selected points (p5 to the right of segment
[image: image15.wmf]4

3

p

p

 in Fig. 4 below), the most recently selected point (p4) is dropped but the next point (p5) needs to be re-tested (testing p5 again and finding it to the right of segment
[image: image16.wmf]3

2

p

p

, there fore drop point p3). This re-testing continues until the next point is found to be to the left of two most recently selected points (p1, p2). At this point, the next point (p5) is selected, and scan continues. The total time of scan is still O(n) because each testing (call to method signedArea()) takes constant time, causing either a new point being selected or an old point being de-selected. Also, a point can only be selected once and and de-selected at most once. Thus, the total number of signedArea() calls is < 2n.

Origin

O

 x-axis

y-axis

Point (3,2)

Fig. 1

a convex polygon

of 5 sides

A non-convex polygon and its convex hull denoted by extreme points (black dots)

Fig. 2

line segment

 p0

 p1

 p2

 p3

 p7

 p6

Fig. 3

Graham’s scan: copy points 0, 1, 2; copy 3 but eliminate 2 because point 3 is to the right of segment 12; now use points 1, 3 to decide copying 4 (since it is to the left); use 3, 4 to copy 5 but drop 4; use 3, 5 to copy 6, then use 5, 6 to copy 7. (n = 8.)

 p4

 p5

Point 2 is to the left of segment 01; point 3 is to the right of segment 12

p2 lies within segment � EMBED Equation.3 ���:

p1

p3

p2

p2 lies outside of segment � EMBED Equation.3 ��� (and collinear):

p3

p2

p1

p2 coincides with either p1 or with p3:

p1

p2

p3

Fig. 4

p0

p1

p2

p3

p4

p5

_1045348562.unknown

_1045351029.unknown

_1045518684.unknown

_1045518752.unknown

_1045351570.unknown

_1045515796.unknown

_1045349397.unknown

_1045349473.unknown

_1045349322.unknown

_1045346062.unknown

_1045346350.unknown

_1045346402.unknown

_1045346107.unknown

_1045343720.unknown

_1045345940.unknown

_1045338939.unknown

