COP3530C.01, Spring 2001

Assigned: Feb. 6, 2001

S. Lang
Assignment #3
Due: Feb 20 in class, within 10

minute of the lecture at 11:30 am

(Note: Please note minor revisions in boldface form, 2/07/01)

You are to write a program in C++ or in Java which uses a binary tree ADT to be provided by the instructor as a basis to implement a simulated hierarchical file system. The binary tree ADT will consist of a BinTree class and a BinTreeNode class, implementing a special kind of binary trees in which each node has an up-link to its parent node, a sibling-link to its right sibling node, and two child links, first and last, pointing to the leftmost and rightmost child nodes, respectively. As a result, this structure allows implementation of a general rooted tree such as that you find in a typical hierarchical file system. The following first describes the BinTree and BinTreeNode classes, then some details of your program.

The BinTree class consists of one private instance variable (data member) of type BinTreeNode representing the root of a binary tree, and some public methods (functions) including makeEmpty(), isEmpty(), insert(), remove(), find(), and a constructor. The BinTreeNode class representing the tree nodes consists of an object field (storing the data), the four link fields described earlier, and several constructor functions. (These classes are similar to the BinarySearchTree and BinaryNode classes of the Text, and will be provided by the instructor.) Using these as a basis, your program will implement a DirTree class for a “simulated” directory system, and an Item class for the “simulated” files within the directory. Specifically, the Item class consists of a string representing the full pathname of a “simulated” file (e.g., /usr/code/hw3.java), an integer field for the “size” of the file, and the necessary constructor(s). When a simulated file’s pathname ends with a “/”, the file is considered a directory file. Similarly, the DirTree class consists of a BinTree instance variable, and a private string variable representing the current (or working) directory in this simulated file system where a user is logged on. Initially, the current directory is set to the root “/”.

The DirTree class must implement the following public methods:

(1) cr(): creates a simulated non-directory file at the current directory, using the specified file name and integer size parameters.

(2) md(): creates a simulated directory file under the current directory, using the file name as a parameter and initializing its size to 0 (i.e., empty initially).

(3) cd(): changes the current directory to the directory as specified by the parameter.

(4) ls(): lists all files one level under the current directory.

(5) lr(): lists all files in the entire directory tree under the current directory in a preorder traversal.

(6) rm(): removes the file as specified in the parameter; removes the entire directory tree specified by the parameter if it is a directory file.

(7) sz(): lists the sizes and the names of all the files in the entire directory tree under the current directory, in a postorder traversal (the size of a directory file is the sum of the sizes of all the files under it).

Your program must implement a main() method which runs an infinite loop repeatedly prompting the “user” for commands specified above (i.e., “cr”, “md”, “cd”, “ls”, “lr”, “rm”, and “sz”) and carrying out the operations, showing the output on the screen. A command “ex” terminates the program. A sample “user session” consisting of user commands will be provided by the instructor for testing your program. The requirements for this program are similar to those used previously:

(a) Test and run your program in one of the following programming environments (and only these): Microsoft Visual C++ or g++ (on Olympus) for C++ code; JBuilder or JDK 1.2 (or higher) for Java code.

(b) Turn in a hardcopy of the source code (all necessary files including those from the Text) with proper documentation, and a hardcopy of the output file. Also, turn in a floppy disk containing the program files and only those. On a separate sheet specify the programming environment you used and the steps you did for compiling and running your program. Put all your materials in a brown envelope with your name and social security number printed on the front.

(c) Do not email your program files to the instructor or to the TAs; such emails will be discarded without any consideration.

