COP3530C.01, Spring 2001

Assigned: Jan. 11, 2001

S. Lang
Assignment #1
Due: Jan. 23 in class, within 10
minute of the lecture at 11:30 am

1. Exercise 2.2 of the Text, do all parts and provide explanations as precisely as possible. That is, give a proof for each “yes” answer, give a counter example for each “no” answer.

2. Exercise 2.14 of the Text (Horner’s rule for polynomial evaluation).

3. Consider an array implementation of polynomials (of a single variable x) with integer coefficients, in which only the non-zero terms are stored in the array. Specifically, if the non-zero terms of a polynomial are written in decreasing order of the exponents,
[image: image1.wmf],

...

1

1

0

1

1

0

-

-

+

+

+

n

m

n

m

m

x

a

x

a

x

a

where each coefficient ai (0, and m0 > m1 > … > mn–1, use an array of size 2n to store the (coefficient, exponent) pairs. (For example, the polynomial, 5 x11 + 3 x6 –10 x3 + 6, is stored in an array A[0..7] = {5, 11, 3, 6, –10, 3, 6, 0}.) Suppose the input contains such an array A[0..2n–1] of 2n integers representing a polynomial of n non-zero terms, and an integer value x. Write an algorithm to evaluate the polynomial at the given x value, based on a single-pass loop through the array evaluating each term aixi using the exponentiation function described in the Text. You should write the algorithm in a pseudocode, and analyze the time complexity of your algorithm in terms of the input parameters n and m0 (m0 being the largest exponent).

4. Given an array A[0..n–1] containing n integers, n (1. Write an algorithm to output the maximum and the minimum values in the array using each of the following two ideas:

(a) Set max = min = A[0]. Loop through each of the remaining locations of array A comparing each against the current max and min, resetting them if necessary.

(b) Divide the array A into two halves. (In case n is odd, the first half has one more element than that in the second half.) Find the max and min of the two halves, respectively, based on the straightforward method of Part (a). (Thus, there is no recursion here.) Then, compare the two max’s and two min’s, respectively, to determine the overall max and min for the entire array.

In each part, write the algorithm in a pseudocode and calculate precisely the number of “element comparisions” used in the algorithm (i.e., count comparisons involving two array elements, such as A[i] < A[j], max1 > A[i], etc.). In part (b), you may want to distinguish the two cases: n being even and n being odd.

_1041024307.unknown

