COP3530, Fall 99
-- 4 --
Sample Quiz#1

COP 3530 – CS3 Fall 1999
Sample Quiz # 1
Name:
Key

6
1.
Consider an Abstract Data Type, EventQueue (EQ), defined by the following protocol

public EventQueue() – constructs the EQ with an empty state (no upcoming events)
public void put(int t, Event ev) – adds a new event, ev, scheduled to occur at time, t, to the EQ. Multiple events can occur at the same time.

public Event peek() – returns an event with the smallest time value of all events in the EQ. Null is returned if the queue is empty. This does not change the EQ.

public Event pop() – pops an event with the smallest time value of all events from the EQ. Null is returned if the queue is empty. This changes the EQ.

Fill in the order of complexities in terms of N, the number of events being stored, of each of the three services provided for the EQ ADT, given the following four approaches to implementation. In all cases, assume that you are concerned with average, not worst case performance.

i.)
The state of the EQ is represented as a Balanced Priority Ordered Tree (BPOT). Here we store the minimum time value, not the maximum at the root of each subtree. You should assume a Min Heap data structure is used.

ii.)
The state of the EQ is represented by a BST, the time serving as the sort key. Assume a right child / left child linked list data structure.

iii.)
The state of the EQ is represented by an Unsorted List (UL). Assume a simple array data structure that stores the N events unsorted in positions 0 to N-1.

iv.)
The state of the EQ is represented by a Sorted List (SL). Assume a simple array data structure that stores the N events in positions 0 to N-1, sorted low to high by time.

BPOT
BST
UL
SL

put
lg N
lg N
1
N

peek
1
lg N
N
1

pop
lg N
lg N
N
N

3
2.
Describe the concept of encapsulation.

The data structures (state representation) and method implementations are hidden. Only the set of services (protocol) is exposed. Changes to data structures and/or method implementations can be made so long as these do not change the semantics of the services.

4
3.
Assuming that T(1) = 1 and k(0, use the following table to solve the recurrence equations in a.)-d.).
Inductive Equation
T(n)

T(n) = T(n – 1) + bnk
O(nk+1)

T(n) = cT(n – 1) + bnk, for c > 1
O(cn)

T(n) = cT(n/ d) + bnk, for c > dk
O(nlogd c)

T(n) = cT(n/ d) + bnk, for c < dk
O(nk)

T(n) = cT(n/ d) + bnk, for c = dk
O(nk log n)

a.)
T(n) = 2 T(n/3) + n
c < dk
O(n)

b.)
T(n) = 2 T(n–1) + 2n2
c > 1
O(2n)

c.)
T(n) = 2 T(n/2) + 2
c > dk
n lg 2 = O(n)

d.) T(n) = T(n–1) + n2
c = 1
O(n3)

4.
Consider an Abstract Data Type, Deque, defined by the following protocol:

public Deque() // constructs an empty deque

public boolean isEmpty() // returns true if the deque is empty

public boolean addLeft(Object item) // add an element on the left end

public boolean addRight(Object item) // add an element on the right end

public Object removeLeft() // removes an element from the left end

public Object removeRight() // removes an element from the right end

A reasonable data structure for this ADT is a pointer to the tail (right) element in a circularly linked lists of elements, with links pointing from left towards right (the rightmost pointing back circularly to the leftmost.)

[image: image1.wmf]…

right

deque

el

next

el

next

el

next

element

element

element

4
a.)
What is the worst case complexity of algorithms needed for each of the four main services (two adds and two removes), given a deque containing N items.?

Service
Worst case

addLeft
O(1)

addRight
O(1)

removeLeft
O(1)

removeRight
O(N)

2
b.)
What data structure changes would you recommend to produce fast versions of all of these services? Justify.

Change the singly linked list to a doubly linked list. This allows access to the 2nd from rightmost in O(10 time, so removeRight now takes O(1).

8
5.
Analyzing the complexity of algorithms often requires that you solve a recurrence equation. For instance, an algorithm involving recursion might yield a time T(n), for n>1, defined recursively by

T(n) = 2(T(n-1) + 2, with the boundary condition that T(1) = 2.

Show that T(n) is 2n+1 – 2. You must use induction to prove that this equality holds for all n > 0, i.e., inductively prove the statement S(k) : T(k) = 2k+1 – 2 for all k(1.

Basis: S(1)
T(1) = 2 by definition of T (this is the boundary condition)

But, 2k+1 – 2 = 21+1 - 2 = 4 - 2 = 2 . 

Inductive Hypothesis: Assume for some k>1 that S(i) is true whenever i<k.

That is assume T(i) = 2i+1 – 2, for i<k.

Inductive Step: Show S(k)

T(k)
= 2(T(k-1) + 2, by definition and fact that k>1.

= 2((2(k-1)+1 - 2) + 2, by induction hypothesis.

= 2(k-1)+1+1 - 4 + 2

= 2k+1 - 2 
2
6.
An expression is often represented in a binary tree.

When unary prefix operators are included, is the operand the left or right child of the operator node?

right

What kind of traversal (prefix, infix or postfix) is carried out in order to produce a fully parenthesized standard form version of the expression?

infix

5
7.
Apply the even-odd parallel algorithm presented in class for sorting the 6 elements in the following linear array of 6 processors. Show the results of each of the up to 6 passes that it takes to complete this ascending (low to high) sort.

[image: image2.wmf]3

4

2

9

7

1

Initial Contents

[image: image3.wmf]3

4

2

9

1

7

After Pass 1

[image: image4.wmf]3

2

4

1

9

7

After Pass 2

[image: image5.wmf]2

3

1

4

7

9

After Pass 3

[image: image6.wmf]2

1

3

4

7

9

After Pass 4

[image: image7.wmf]1

2

3

4

7

9

After Pass 5

8.
Consider the Longest Common Subsequence (LCS) problem for string a1 a2… an and b1 b2 … bm. In solving this, you first build a matrix L, such that L[i,j] is the length of the lcs of a1 a2… ai and b1 b2 … bj. L[n,m] is then the length of the desired lcs. Actual lcs’s can then be built by traversing the matrix L, starting at L[n,m].

a.)
L can be filled in by either a recursive, divide and conquer procedure or an iterative dynamic programming strategy.

2

What is the order of execution of the iterative method for strings of length n and m?
O(n (m)

6
b.)
Fill in the lcs length values of the following matrix, L, given strings orate and roarer. I have been kind enough to fill in the boundary values.

e
0
1
1
2
2
3
3

t
0
1
1
2
2
2
2

a
0
1
1
2
2
2
2

r
0
1
1
1
2
2
2

o
0
0
1
1
1
1
1

0
0
0
0
0
0
0

r
o
a
r
e
r

5
c.)
Draw lines in L, above, that represent one path that may be used to construct an lcs. Draw your path so it doesn’t obscure your answer to part b.

What is the lcs associated with the path you traced? rae
What is a second, distinct lcs? ore, oae
4
9.
Hash Tables that use chaining store items with equal hash indices in the same Bucket. Each bucket is represented by a linked list, with the i-th table entry serving as the head of the linked list of all entries whose hash value is i. An alternative scheme (open addressing) stores all items in a List, represented by a one-dimensional array, with collisions being handled by some list probing, e.g., linear search.

Analyze the Chaining (Bucket) and the Open Addressing using Linear Probing techniques as regards expected time for insertion and lookup. Assume that there are N items in the table, B buckets (for the Bucket technique) and M slots in the array (for the List technique). Fill in values for the order of execution of the four specific cases below, assuming a hash function that distributes the N items evenly across the range of hash values.

Insert / Lookup – They’re the same

Bucket with B = 10
N

Bucket with B = N/2
1

List with M = 2*N
1

List with M = N
N

10.
The following questions are all about max heaps. Below is a part of the IntPriorityQueue class we discussed.

public class IntPriorityQueue {

private int[] heap;

private int size = 0;

private void swap(int i, int j) {

int temp = heap[i]; heap[i] = heap[j]; heap[j] = temp;

}

a.)
Present the method bubbleDown that is used in heapify and priority queue deletion..

5
private void bubbleDown(int i) { // i is the index of element to bubble down

int child = 2 * i + 1;

if (child < size - 1) if (heap[child+1] > heap[child]) child++;

if (child < size) if (heap[i] < heap[child]) { swap(i, child); bubbleDown(child); }

}

6
b.)
If N=8 and heap has the following n elements prior to the heapify

10 14 19 2 30 1 20 22

Show this as a balanced binary tree (that is, show the tree that this heap represents.)

[image: image8.wmf]19

2

22

20

30

1

14

10

What does heap look like after heapify? Show it as a list and then as a BPOT

30 22 20 10 14 1 19 2

[image: image9.wmf]20

10

2

19

14

1

22

30

_979505298.doc

…

right

deque

el

next

el

next

el

next

element

element

element

_980256473.doc

3

2

4

1

9

7

_980256829.doc

2

1

3

4

7

9

_980256869.doc

1

2

3

4

7

9

_980256617.doc

2

3

1

4

7

9

_980255874.doc

20

10

2

30

19

14

22

1

_980256428.doc

3

4

2

9

1

7

_980255637.doc

19

2

22

10

20

30

14

1

_979502135.doc

3

4

2

9

7

1

