
COP 3530 – CS3 Fall 1999
Quiz#2
Name:
Key

14
1.
Consider an Abstract Data Type, WaitingQueue (WQ), defined by the following protocol

public WQ() – constructs the WQ with an empty state (no tasks are waiting)
public void put(Task t, int p) – adds a new task, t, with priority, p (p(0), to the WQ. There can be many tasks of the same priority.

public int max() – returns the priority of the highest priority task in the WQ, -1 if there are none.

public boolean match(int p) – returns true if there is a task in the WQ whose priority is at least as large as p.

public Task deleteHighest() – returns a task in the WQ whose priority is the highest. Returns null if there are no tasks in the WQ. The returned task is deleted from the WQ.

public boolean perfectMatch(int p) – returns true if there is a task in the WQ of priority p.

public int closestMatch(int p) – returns the priority of a task in the WQ that is as close as possible to p. Returns -1 if there are no tasks in the WQ.

public Task deleteClosest(int p) – returns a task in the WQ whose priority is as close as possible to p. Returns null if there are no tasks in the WQ. The returned task is deleted from the WQ.

Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure.

Fill in the order of the average complexities in terms of N, the number of elements being stored, of each of the last seven services provided for the WQ ADT, given the following two approaches to implementation. In all cases, assume that individual sizes can be compared in constant time and that you are concerned with expected, not worst-case performance.

All orderings are based on task priorities, and duplicate priorities are allowed.

i.)
The state of the WQ is represented in a Max Heap implementation of a Balanced Priority Ordered Tree (BPOT). You may not assume that the heap structure stores any state information other than that provided by the normal heap protocol, plus the ability to treat the heap as a array for purposes of direct access to any element.

ii.)
The state of the WQ is represented by a Sorted List (SL). Assume a simple array data structure, sorted low to high, storing data in positions 0 to N-1.

	
	BPOT
	SL

	put
	lgN
	N

	max
	1
	1

	match
	1
	1

	deleteHighest
	lgN
	1

	perfectMatch
	N
	lgN

	closestMatch
	N
	lgN

	deleteClosest
	N
	N

2.
The text shows that the best case performance of Quick Sort is O(N lg N) and its worst case performance is O(N2). The text then details how we can show that the average case performance of Quick Sort is described by the recurrence.

T(N) = ((N+1)/N) T(N-1) + K, where K(1

with boundary conditions T(0) = T(1) =1.

To find a closed form for T(N), we might be tempted to treat (N+1)/N as a small constant. You must argue why this won't work by considering the two possibilities:

3
a)
Argue why treating (N+1)/N as 1, since it approaches 1, as N approaches infinity, leads to a contradiction.

The recurrence becomes T(N) = T(N-1) + K from which we can show that T(N) = O(N)

BUT, the best case for QuickSort is NlgN. Proving that the average is better than the best case is a contradiction.

3
b)
Argue why treating (N+1)/N as 1+(, where (>0 is arbitrarily small, also leads to a contradiction.

The recurrence becomes T(N) = (1+()T(N-1) + K from which we can show that T(N) = O((1+()N).

BUT, the worst case for QuickSort is N2. Proving that the average is worse than the worst case is a contradiction.

10
3.
The following table has entries for the maximum and minimum result sizes and algorithmic costs for approaches to relational operations. Fill in the columns. Assume |R| = n, |S| = m, t = n+m, and |Result| = k. Also assume that the result is a new table, not a change to one of the input tables. Notes: You cannot fill k in to the size columns. You may assume constant time index lookup via a hash table.

	
	Max Size
	Min Size
	Naive
	Post-Sort
	Indexed

	R  S
	t or n+m
	max(n,m)
	n (m
	t lg t
	t or n+m

	C (R)
	n
	0
	n
	n/a
	k or n

	(– (R)
	n
	1
	n2
	n lg n
	n

	R (S
	n (m
	0
	n (m
	k + t lg t
	k+n or k+m

4.
Consider the following relations DIRECTORS, BORROWERS , LOCATIONS and BRANCHES.

DIRECTORS

	DNAME
	BANK

	Arco, M.
	CENTRUST

	Barry, K.
	SUN

	Garcia, R.
	BARNETT

	Jones, A.
	HUNTINGTON

	Sim, R.
	BARNETT

	Sim, R.
	UNION

	Torey, P.
	CENTRUST

CEOS

	CNAME
	BANK

	Arco, M.
	SUN

	Garcia, R.
	BARNETT

	Jones, A.
	HUNTINGTON

	Torey, P.
	UNION

	Trent, C.
	CENTRUST

LOCATIONS

	BANK
	STATE

	BARNETT
	FL

	CENTRUST
	SC

	CENTRUST
	NC

	HUNTINGTON
	FL

	SUN
	FL

	SUN
	GA

	UNION
	GA

ACCESS

	BANK
	TYPE

	BARNETT
	ATM

	CENTRUST
	ATM

	CENTRUST
	WEB

	HUNTINGTON
	ATM

	HUNTINGTON
	WEB

	SUN
	ATM

	UNION
	ATM

Write relational expressions for each of the following queries, and show the tables that result from executing these queries.

4
a)
In what states do we have banks that provide web access?

(STATE(LOCATIONS ((TYPE=WEB(ACCESS))

	FL

	NC

	SC

4
b)
Who are the CEOs of the banks on which "Sim, R." is a director??

(CNAME((SNAME == "Sim, R. (DIRECTORS) ((CEOS))
	Garcia, R.

	Torey, P.

6
5.
Consider the following trees being used to represent equivalence classes (partitions) over the set {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. Show the resulting combination of the first two trees if we do a union(6,9). Now show the final tree that results after we do a union(6,16) – note this second operation is performed on the trees existing after the first union. In each case, assume that the union starts with two finds, each of which uses path compression, and that the unions use tree heights to minimize path lengths.

[image: image1.wmf]4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

[image: image2.wmf]

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

[image: image3.wmf]

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

Assuming that we manage partition trees in the manner above, what is the expected height of trees containing the following number of nodes, under the assumptions of no path compression and then path compression?

Number of Nodes
Expected Height Using
Expected Height Using

No Path Compression
Path Compression

1

4 nodes?
_______2_________
________2________
1

16 nodes?
_______4_________
________3________
1

65,536 = 216 nodes?
_______16________
________4________

6.
Depth first search is the basis for many algorithms concerning graphs, both directed and undirected. Most of these algorithms start with a depth first search that provides a post-order numbering of all nodes.

2

Assuming a graph with n nodes , e edges and M=max(n,e), what is the complexity of assigning post-order numbers to the nodes of a graph?
M

3

How may the post-order numbers be used to determine the existence of a cycle? In answering this, assume post[i] is the post-order number of node i and (i,j) denotes an arc (directed edge) from node i to node j.
if there exists (i,j) such that post[i] (post[j]

2

How can a depth first search determine if an undirected graph is connected?
Choose any node as start – if all are marked after a depth first search from the randomly chosen node then the graph is connected

7.
The second implementations of Dijkstra’s shortest paths algorithm has an algorithmic structure that looks like

1. settled := [FirstCity]; unsettled = [succ(FirstCity) .. LastCity];

2. for v in unsettled do short[v] := dist[FirstCity,v];

3. structure short to suit our needs; // this may require short to be a pair (distance, node)

4. while unsettled <> [] do begin

5. find u in unsettled for which short[u] is shortest;

6. settled := settled + [u]; unsettled := unsettled - [u];

7. restructure short if necessary;

8. for v in unsettled do short[v] := min(short[v], short[u] + dist[u,v])

9. restructure short if necessary;

10. end;

Assume n nodes (cities), e edges and M=max(n,e) where appropriate.

5
a)
What would be the cost of running this algorithm if we maintained short as a sorted list in ascending order? Explain how you arrived at your conclusion by indicating the contributions of the bolded activities in the algorithm.

2.
n

3.
n lg n

iterate n times

5.
1

7.
1

8.
n

9.
n lg n

n + n lg n + n2 lg n = O(n2 lg n)

5
b)
What would be the cost of running this algorithm if we maintained short in a min heap data structure? Explain how you arrived at your conclusion by indicating the contributions of the bolded activities in the algorithm.

2.
n

3.
n

iterate n times

5.
1

7.
lg n or none

either e lg n total bubbleUps or

8.
n

9.
n

n + n2 = O(n2) or n + n lg n + e lg n = O(M lg n)

8.
Warshall’s Algorithm is presented below.

public void warshallsAlgorithm() {

//for each pivot try all pairs of nodes

for (int pivot = 0; pivot < N; pivot++)

for (int v = 0; v < N; v++)

for (int w = 0; w < N; w++)

if (v != w)

connectedMatrix[v][w] = connectedMatrix[v][w] ||

(connectedMatrix[v][pivot] && connectedMatrix[pivot][w]);

}

2
Assuming n nodes and e edges and M=max(n,e), what is the overall complexity of this algorithm? n3

1
Is this a Greedy or a Dynamic Programming algorithm? Dynamic Programming

3
An alternative algorithm is to run dfs n times. What is cost of this dfs approach, and when is it better than Warshall's? Be explicit.

n (M

It is better if M < O(n2). That is, this is better when the matrices are sparse, otherwise it's a toss-up.

9.
Consider the simple scheduling problem where we have a set of independent tasks running on a fixed number of processors, and we wish to minimize the time at which the last task completes.

3

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs and execution times onto three processors? Answer by showing a Gantt chart for the resulting schedule (write the task ID into each time/processor slot used.)

(T1,5)
(T2,7)
(T3,3)
(T4,4)
(T5,9)
(T6,7)
(T7,1)
(T8,3)

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	1
	1
	1
	1
	1
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	2
	2
	2
	2
	2
	2
	2
	6
	6
	6
	6
	6
	6
	6
	
	

	3
	3
	3
	4
	4
	4
	4
	7
	8
	8
	8
	
	
	
	
	

3

Now show what would happen if the times were sorted from longest to shortest.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	5
	5
	5
	5
	5
	5
	5
	5
	5
	3
	3
	3
	7
	
	
	

	2
	2
	2
	2
	2
	2
	2
	1
	1
	1
	1
	1
	
	
	
	

	6
	6
	6
	6
	6
	6
	6
	4
	4
	4
	4
	8
	8
	8
	
	

3

Now show an optimal (quickest time to complete all tasks) schedule.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	2
	2
	7
	
	
	

	5
	5
	5
	5
	5
	5
	5
	5
	5
	4
	4
	4
	4
	
	
	

	3
	3
	3
	6
	6
	6
	6
	6
	6
	6
	8
	8
	8
	
	
	

_1005412553.doc

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

_1005412776.doc

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

