COP3530 Fall 99
-- 4 --
Exam#1

COP 3530 – CS3 Fall 1999
Quiz # 1
Name:
Key

12
1.
Consider an Abstract Data Type, IntCollection (IC), defined by the following protocol

public IC() – constructs the IC with an empty state
public void insert(int x) – adds a new integer x to the IC. Duplicates are allowed.

public boolean hasDuplicates() – returns true, if the IC contains at least one duplicate, false otherwise.

public int range() – returns an integer that indicates the range in the IC, i.e., the difference in values between the smallest and largest integers stored in the collection.

public boolean find(int x) – returns true, if the IC contains at the value x, false otherwise.

Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure.

Fill in the order of complexities in terms of N, the number of elements being stored, of each of the last four services provided for the IC ADT, given the following six approaches to implementation. In all cases, assume that you are concerned with expected, not worst case performance. You should not be surprised if one or more of these suggested approaches are poor choices. (Note: Duplicates are allowed.)

i.)
The state of the IC is represented in a Min Heap implementation of a Balanced Priority Ordered Tree (BPOT).

ii.)
The state of the IC is represented as a Binary Search Tree (BST). Assume a right child / left child linked list data structure with your only direct access being to the root.

iii.)
The state of the IC is represented by a Hash Table (HT). You may assume that collisions are handled by using unsorted buckets and that the hash function evenly distributes the N elements over B buckets. Your answer should be in terms of two possibly independent parameters, N and B.

iv.)
The state of the IC is represented by an Unsorted List (UL). Assume a simple array data structure, storing data in positions 0 to N-1.

v.)
The state of the IC is represented by a Sorted List (SL). Assume a simple array data structure, storing data, smallest to largest, in positions 0 to N-1.

vi.)
The state of the IC is represented by a Sorted Linked List (SLL). Assume a singly linked list data structure, sorted low to high. Further assume that we use forward links (lower to higher valued entries), and that the links are circular (tail points back to head) with a handle to recall the head (element with smallest value) of the list.

	
	BPOT
	BST
	HT
	UL
	SL
	SLL

	insert
	lg N
	lg N
	1
	1
	N
	N

	hasDuplicates
	N lg N
	N
	B+Nlg(N/B)
	N lg N
	N
	N

	range
	N
	lg N
	N+B
	N
	1
	N

	find
	N
	lg N
	N/B
	N
	lg N
	N

3
2.
Which of the following are AVL trees, assuming the labels are sort keys? Circle yes or no, as appropriate, above each tree. For any that are not AVL trees, circle the first node at which the AVL property is lost.

AVL (yes / no)
AVL (yes / no)

[image: image1.wmf]

4

2

5

7

3

6

1

8

[image: image2.wmf]4

2

5

7

23

6

11

18

3.
Assuming that T(1) = 1 and k(0, use the following table to solve the order of the recurrence equations in a.)-c.). You must specify values of b, c, d and k, as appropriate. Also your answers must be reduced and may not involve any variables except n.

	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk log n)

b
c
d
k
Order of T(n)

2
a.)
T(n) = 4 T(n/4) + 4n
4
4
4
1
n lg n
2
b.)
T(n) = 2 T(n–1) + 1
1
2
n/a
0
2n
2
c.)
T(n) = 8 T(n/2) + n2
1
8
2
2
nlog28 = n3
6
4.
Analyzing the complexity of algorithms often requires that you solve a recurrence equation. For instance, an algorithm involving recursion might yield a time T(2n-1), for n(1, defined recursively by

T(2n-1) = 2n T(2n-1-1), with the boundary condition that T(0) = 1. (Note: 2n-1 = 0, when n=0.)

Show that T(2n-1), for n(0 is 2n (n+1) / 2. You must use induction on n to prove that this equality holds.
That is, inductively prove the statement s(n): T(2n-1) = 2n (n+1) / 2,for n (0.

Basis (n=0): show s(0): T(20-1)= 20 (0+1) / 2

T(20-1) = T(0) = 1, by definition (boundary condition).

But, 20 (0+1) / 2 = 20 = 1, which verifies the base case.

IH: Assume for some n>0 that s(k)is true for all k<n. That is assume T(2k-1) = 2k (k+1) / 2 for all k<n.

IS: Show s(n), n>0. That is, show that T(2n-1) = 2n (n+1) / 2
But, T(2n-1)
= 2n T(2n-1-1) by definition, since n>0.

= 2n2n (n-1) / 2 by the inductive hypothesis

= 2n+n (n-1) / 2 by property of exponents

= 2(2n + n2 - n) / 2 by simple algebra

= 2(n2+n) / 2 by simple algebra

= 2n (n+1) / 2 which verifies the inductive step

5
5.
Apply the even-odd parallel transposition algorithm presented in class for sorting the 8 elements in the following linear array of 8 processors. Show the results of each of the up to 8 passes that it takes to complete this ascending (low to high) sort.

[image: image3.wmf]

2

14

6

9

3

7

11

4

Initial Contents

[image: image4.wmf]

2

14

6

9

3

7

4

11

After Pass 1

[image: image5.wmf]

2

6

14

3

9

4

7

11

After Pass 2

[image: image6.wmf]

2

6

3

14

4

9

7

11

After Pass 3

[image: image7.wmf]

2

3

6

4

14

7

9

11

After Pass 4

[image: image8.wmf]

2

3

4

6

7

14

9

11

After Pass 5

[image: image9.wmf]

2

3

4

6

7

9

14

11

After Pass 6

[image: image10.wmf]

2

3

4

6

7

9

11

14

After Pass 7

[image: image11.wmf]

After Pass 8
1

What is the order of execution (worse case time) of this algorithm for sorting n values?
O(n)

1

What is the cost of this algorithm for sorting n values?
O(n2)

6.
Consider the Longest Increasing Subsequence (LIS) problem for the sequence {a1, a2,…, an} of integers. In solving this, you first build a list L, such that L[i] is the length of the lis of a1 a2… ai which includes ai. The largest value in L[] is then the length of the desired lis. Actual lis’s can then be built by traversing the list L in reverse order.

a.)
L can be filled in by either a recursive divide and conquer procedure or an iterative dynamic programming strategy.

1

What is the order of execution of the iterative dynamic programming lis method for sequences of length n?
O(n2)
1

What is the order of execution of the recursive divide and conquer lis method for sequences of length n?
O(2n)
4
b.)
Fill in the lis length values, L, given sequence {1, 5, 2, 6, 14, 4, 7, 3}? I've started L, putting in the boundary value for an artificial lowest number -(and the actual lis for the subsequence ending at the first value a1.

	0
	1
	2
	2
	3
	4
	3
	4
	3

	-(
	1
	5
	2
	6
	14
	4
	7
	3

3
c.)
Draw lines in L, above, that represent one path that may be used to construct an lis. Draw your path so it doesn’t obscure your answer to part b.

What is the lis associated with the path you traced? {1, 2, 4, 7}
What is a second, distinct lis? {1, 2, 6, 7}, {1, 5, 6, 7}, {1, 2, 6, 14}, {1, 5, 6, 14}
6
7.
Assume you have a sequence {a0, a1, … , an-1} of integers. Further, assume that this sequence can start with some number of zeros, but that zeros can never appear except in a contiguous subsequence at the start. In other words, once you stop seeing zeros, there can be no more. Present an efficient, in terms of worst-case performance, algorithm that returns the number of zero (between 0 and n) in such a sequence.

int zeroCount = howManyZeros(a, 0, a.length – 1);
// call the service

public int howManyZeros (int a[], int lo, int hi) { // returns number of zeros between lo and hi
while (lo <= hi) { // iterative version is real clean

int mid = (int) (lo + hi)/2;

if (a[mid] == 0) lo = mid+1;

else hi = mid-1;

}

return lo;

}

1

What is the order (big Oh) in terms of n of this algorithm?
lg n

1

What kind of algorithm is this (greedy, d&c, dynamic programming.)?
d&c

4
8.
There are many ways to handle collisions that arise in inserting items into hash tables, but all of these require that insertion and lookup employ the same search strategy. To support this using linear "open addressing" probing we usually do "lazy" deletion. Explain the term "lazy" and why this strategy is used.

Lazy means that we just mark the slot as empty. We can reuse this on a subsequent insertion, after we are sure the item being inserted is not already in the table.

We need the search to treat this as a space over which it passes. The contents are unimportant, but it cannot be treated as empty, else we might stop here when the item is actually in a later slot, if this space were full when that item was originally inserted.

9.
Consider the following expression tree (left and right orientation reflect left/right child relationships).

[image: image12.wmf]

*

+

/

E

C

D

–

–

+ +

A

2

What is printed out by a post-order traversal of this tree?

C D E + / A ++ -- *

2

What is printed out by an in-order traversal of this tree?

C / D + E * ++ A --

1

Assume that the left subtree takes two register to compute, and the right takes one. Which should be computed first in order to use the fewest registers? Circle one
left
right

10.
The following questions are all about max heaps. Below is part of the IntPriorityQueue class we discussed.

public class IntPriorityQueue {

private int[] heap;

private int size = 0;

private void swap(int i, int j);

private void bubbleUp(int i);

private void bubbleDown(int i);

public void insert (int value);

3
a.)
Present the method bubbleUp(int i).

private void bubbleUp(int i). {

if (i>0) {

int parent = (int) (i - 1)/2;

if (heap[parent] < heap[i]) {

swap(parent, i);

 bubbleUp(parent);

}

}

}

5
b.)
If size=8 and heap has the following size=8 elements prior to the heapify

11 12 14 2 6 17 10 13

Show this as a balanced binary tree (that is, show the tree that this heap represents). Do not sort or heapify yet, just show the tree represented by the heap data structure as given here.

[image: image13.wmf]

14

2

13

10

6

17

12

11

What does heap look like after heapify? Show it as a list (heap) and as a BPOT

17 13 14 12 6 11 10 2

[image: image14.wmf]

14

12

2

10

6

11

13

17

_999890164.doc

2

6

14

3

9

4

11

7

_999890357.doc

2

3

4

6

7

14

11

9

_999892091.doc

14

2

13

11

10

6

12

17

_1000121228.doc
[image: image1.wmf]

18

4

2

5

7

23�

11

6

_999892090.doc

14

12

2

17

10

6

13

11

_999890306.doc

2

3

4

6

7

9

11

14

_999890356.doc

2

3

4

6

7

9

14

11

_999890226.doc

2

3

6

4

14

7

11

9

_999853294.doc
[image: image1.wmf]

8

4

2

5

7

3�

1

6

_999890059.doc

2

14

6

9

3

7

11

4

_999890163.doc

2

6

3

14

4

9

11

7

_999855035.doc

+

– –

+ +

/

A

E

C

*

D

_999851299.doc

2

14

6

9

3

7

4

11

_999851363.doc

