Computer Science III

COP 3530 -- Fall 1999

[image: image1.wmf]
University of Central Florida

Computer Science Department

Charles E. Hughes
WEEK # 1 (1 day)
1. Syllabus and the House Rules
Grading Policy

Overview of course -- read chapters 1, 2 and 3 of W as a review

Self diagnostic test – answers will be available in a week.

2. Java/C++ overviews

Assignment #1: Problems 1.8a,b,c, 1.12. Be complete and neat. This is individual work. If you have

problems, see me. Turn in on Thursday, August 26.

COP 3530
Fall 1999
Self Diagnostic Test

1. The algorithmic (programming) techniques of recursion and iteration can be related to the mathematical proof technique of induction in a manner that allows inductive proofs of correctness and run-time complexity. Show this relationship by proving that the first of the following two code segments correctly computes N2, for N(0, and that the second has run time complexity 2N–1, N(1. In this latter case, we base complexity on the number of recursive calls made.

function sq(N : integer) : integer;

begin

if N<=0 then sq := 0

else sq := 2*N – 1 + sq(N-1)

end; { sq }
HINT: Prove S(N): sq(N) = N2, N(0

procedure Move (n:integer; X, Y, Z:char);

begin

if n = 1 then writeln('Move ', X, ' to ', Y)

else begin

Move (n-1, X, Z, Y);

writeln('Move ', X, ' to ', Y);

Move (n-1, Z, Y, X)

end
end; { Move }

HINT: Prove S(N): T(N) = 2N–1, N(1, where T(1) = 1; T(N) = 2*T(N–1) + 1, N>1.

2.
There are many competing abstract implementations for a dictionary, three of which are a sorted linear list (not a linked list), a balanced binary search tree and a trie. Focusing on the lookup only, I have given informal algorithms and analyses of the costs of looking up a word. Discuss the pros and cons of each abstract implementation. Be sure to specify the complexity of the other operations (insert and delete) for each implementation.

lookup
sorted linear list
Start in the middle of the list. If the word is found, report success. If not, and the new word is less than the one in the middle, ignore the bottom half, focusing on the top half of list only. Otherwise, ignore the top half, focusing on the bottom only. If you run out of words in the list, report failure. The search takes O(logN) operations.
balanced binary search tree
Traverse the tree, starting at its root. Move left any time the word being looked up is less than that in the node you’re visiting; move right if it’s greater; stop the search if it’s equal or there are no more nodes. If found, report success. If out of nodes, report failure. The search takes O(logN) operations.
trie
Traverse the tree, starting at the left child of its root. Check one character at a time, starting at the first. If the character does not match that in the current node, move to its right sibling. If no right sibling exists, report failure. If the character matches that in the current node and all characters have been checked, report success. Otherwise, move down to the left child of this node, focusing on the next letter of the word being looked up. The search takes O(K) operations, where there are K characters in the word.

3.
The following algorithm will print out a fully parenthesized version of the contents of a binary expression tree, given that it is called with a pointer to the root node.
type
NodePtr = ^Node;

Node = record

nodeLabel : char;

height : integer;

leftChild, rightChild : NodePtr;

end;
procedure fullParens(tree : NodePtr);

begin

if tree <> NIL then with tree^ do begin

write(‘ (’);

fullParens(leftChild);

write(nodeLabel, ‘ ’);

fullParens(rightChild);

write(‘) ’);

end
end; (* fullParens *)

a.)
First, given the expression (~A – B) * C / (D + E), show the binary tree that represents this expression. (Note: ~ is a unary operator with higher precedence than binary operators. Hint: The operand of a unary operator is typically recorded in the right subtree of the operator node.

b.) Now, show what would be printed if we called fullParens with this tree.

c.)
Write a function computeHT which, when given a pointer to the root node of a binary expression tree, sets the value of the height field of each node to reflect its height in the tree. Note: Leaf nodes have height 0.

function computeHT(tree : NodePtr) : integer;

begin
end; (* computeHT *)

4.
Fill in the following table by placing X’s in the appropriate columns (one per row):

	Order of Execution
	O(1)
	O(log2N)
	O(N)
	O(Nlog2N)
	O(N2)
	O(2N)

	Worst case for Bubble Sort
	
	
	
	
	
	

	Best case for Bubble Sort
	
	
	
	
	
	

	Worst case for a Quick Sort
	
	
	
	
	
	

	Average case for Merge Sort
	
	
	
	
	
	

	Worst case for Towers of Hanoi
	
	
	
	
	
	

	Worst case for delete from heap
	
	
	
	
	
	

	Best case for insert into heap
	
	
	
	
	
	

	Average case for Heapify
	
	
	
	
	
	

5.
Assuming that T(1) = 1 and k(0, use the following table to solve the order of the recurrence equations in a.)-d.).
	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk log n)

a.) T(n) = 2 T(n/2) + 56n10
b.) T(n) = 2 T(n–1) + 56n10
c.)
T(n) = T(n/2) + 12

d.) T(n) = T(n–1) + 12

6.
Explain why, when we represent a queue in a linked list data structure, that we are better off linking a queue's elements from oldest to newest, rather than newest to oldest. You can either discuss this in terms of having an oldest and newest pointer or in terms of having a circularly linked list with just a newest pointer. Describe the problems with newest to oldest linking and indicate how oldest to newest addresses these problems. Use pictures to make your discussion clear and easy to follow.
Consider circular with pointer to newest, and all internal nodes pointing from newer toward older

Consider circular with pointer to newest, and all internal nodes pointing from older toward newer

5
7.
Explain why when we represent a queue in a linked list data structure that we are better off linking a queue's elements from oldest to newest, rather than newest to oldest. You can either discuss this in terms of having an oldest and newest pointer or in terms of having a circularly linked list with just a newest pointer. Describe the problems with newest to oldest linking and indicate how oldest to newest addresses these problems. Use pictures to make your discussion clear and easy to follow.

7.
The following questions are all about max heaps.

a.)
A heap data structure containing a maximum of MAX integers has the following rather innocent looking type definition.
type
intHeap = array[1..MAX] of integer;
What are the added properties, beyond this simple array definition, that makes a list a heap?

b.)
Present a Pascal-like procedure that deletes the maximum value from a heap H containing N integers, retaining the heap property. You will need to write any routines that you call from your deleteMax. Don’t worry about forward references; assume you can reorder procedures later. Also, assume that someone else has already written a procedure swap(A,i,j) that swaps A[i] with A[j].

procedure deleteMax(var H : intHeap; var N : integer);

c.)
If N=8 and heap H has the following N elements

25 18 16 9 7 1 9 3

What does the associated Priority Ordered Tree look like?

What will the list look like after a deleteMax is executed?

What does the associated Priority Ordered Tree look like?

Java

· Language of the Web.

· Almost pure object oriented with very rich set of base classes.

· Uses virtual machine to be non-machine specific.
JIT softens the cost of doing this.

· Supports graphical interaction, component reuse and networking.
Very nice event handling encourages reactive programming.

· Has no explicit pointers and no pointer arithmetic.
Every object reference is a handle (hidden pointer).

· Does static type checking.

· Does automatic garbage collection.
This is now incremental.

C++

· Extension to C.

· Allows a mixture of procedural and OO programming.
At one time had no base classes.
The STL finally establishes a limited standard.

· Compiles to native code.

· Allows you to help compiler generate very efficient code.
Very nice template capability encourages generic programming.

· Supports pointers and pointer arithmetic.

· Does static type checking.

· Garbage collection is your responsibility.

Types

Primitive Types in Java: boolean, byte, char, double, float, int, long, short

int anInteger;

double aReal;

char aCharacter;

boolean aBool;

Primitive Types in C++: bool, char, double, float, int, long, long double, short, wchar_t

bool aBool;

In Java long (64 bits) has larger range than int (32 bits)

int ranges to about (2 billion (around 9 digits)

long range to about (8 quintillion (18 digits)

In C++, long, int are machine-dependent is C++ (usually like Java)

C++'s long double is double a long, so usually 128 bits

In Java and C++ float (32 bits) has smaller range than double (64)

float ranges to about (1038

double ranges to about (10308
Note: float has only seven digits of precision

double has just fifteen

short and byte (in Java) are 16 and 8 bit ints

char is 8 bits in C++ and a Unicode, 16 bit character in Java.

wchar_t is C++'s 16 bit character.

boolean (Java) is 1 bit, bool (C++) is machine dependent (usually 32 bits))

In Java all other data are instances of Classes -- User-Defined Types

A class instance is called an object

Objects are made in the image and likeness of their classes

C++ is similar, except it has explicit pointers, array names are also pointers

C++ also has structs (very public classes)

Assignments

Assignment Operator

Java and C use = rather than the symbol := used in Pascal

int count = 0; // can initialize in declaration

count = count + 1; // will increment count by 1

count += 5; // will increment by 5

Arithmetic

Addition (+); unary ++ (prefix and postfix)

Subtraction (-); unary -- (prefix and postfix); unary negation (-)

Multiplication (*)

Division (/)

Modulo (%)

Java and C++ do integer division if both participants are int

You use “casts” to take care of other cases.

double aDouble = 27.9;

int quotient = (int) (aDouble / 3.1); // Java and C++

int quotient = static_cast<int>(aDouble / 3.1); // C++ only; dynamic_cast is used with objects

int quotient = aDouble / 3.1; // C++ does automatic cast; Java does not

Constants in Java are objects, primitives or methods (functions) that are final (cannot be changed)

final String PROFESSOR = "Charles E. Hughes ";

final int NUMBER_OF_CHILDREN = 2;

final void dontTreadOnMe() { … } // can be in-lined

A final class cannot be extended

C++ const is the same as Java's final for objects and primitives.

It is NOT related to Java's final for classes or methods.

const methods cannot alter the states of their arguments (well there is a mutable keyword (barf) to override this)

Input/Output (Java)

In Pascal have

read(list); readln(list); write(list); writeln(list)

In Java, there is no easy correspondence

Java is not designed for keyboard operation

Java is designed for file and GUI interaction

KB Input / Output in Java

import java.io.* // needed to get access to I/O

//Output

System.out.print(aString);

System.out.println(aString);

//Input (one value per line / later we’ll do better)

BufferedReader stdin = new BufferedReader

(new InputStreamReader(System.in));

int anInt1 = Integer.parseInt(stdin.readLine()); // one way

int anInt2 = Integer.valueOf(stdin.readLine()).intValue(); // alternative way

double aDouble = Double.valueOf(stdin.readLine()).doubleValue();

In above we wanted primitive int and double, but wrapper classes for each

Integer is a class, each of whose instances holds a single int

Double is a class, each of whose instances holds a single double

Input/Output (C++)

C++ supports keyboard operation, but has no guaranteed GUI classes

I/O is often seen with C syle strings

//C style strings

#include <iostream.h>

int main() {

char x[81]; // can also use

while (cin >> x) cout << "Read string " << x << endl; // echo input

return 0;

}

Or C++ STD style strings

//C++ style strings

#include <iostream> // note lack of .h

#include <string>

using namespace std; // if you don't do this, string is undefined

int main() {

string x;

while (cin >> x) cout << "Read string " << x << endl; // echo input

return 0;

}

The text adds its own vector and string implementations. These provide bounds checks (good).

You may use either, BUT include the .h and .cpp files from Weiss in your project folder if you use his classes.

#include <iostream.h>

#include "mystring.h" // you must include his string.cpp in project or include string.cpp

int main() {

string x;

while (cin >> x) cout << "Read string " << x << endl; // echo input one word at a time; see getline

return 0;

}

Decisions

Relational operators

== != > >= < <=

// if-then

if (cond1) { // must include parentheses

actions_when _ cond1_ true;

} // braces needed only if multiple statements selected

// if-then-else

if (conditional_expression) {

actions_when_ conditional_expression_true;

} else {

actions_when _ conditional_expression_ false;

}

// if-then-elseif-else

if (cond1) {

actions_when _ cond1_ true;

} else if (cond2) {

actions_when _ cond1_ false_and_cond2_true;

} else {

actions_when _ cond1_ false_and_cond2_false;

}

Logical Operators

&& || !

Note: &, | are bit-wise operators

Iteration

while (conditional_expression)

statement;

do

statement;

while (conditional_expression);

for (init_expr; cond_expr; incr_expr)|

statement;

for is very flexible, very useful, and very dangerous

for (index=0; index<MAX; ++index) s; //common

for (index=0; index=MAX-1; ++index) s; //ERROR use ==, not =

Uses of for iteration

for (int index=0; index<n; index++) s; // Obvious use with counting iterations

// these really are more C-like than C++ or Java which use iterators

for (Node current=list; current!=null; current=current.link) s; // Java traversing a linked list

for (Node *current=list; *current!=null; current=current->link) s; // C++ traversing a linked list

for (int count=0, Node p=list; p!=null; p=p.link, count++); // Java counting nodes in a linked list

for (int count=0, Node p=list; p!=NULL; p=p->link, count++); // C++ counting nodes in a linked list

// above use , operator to create multi-part expressions

Early Breaks and Continues

break; //immediately exit from a control structure

continue; //immediately start next iteration

if (condition) break;

Conditionals (other than if)

Conditional Operator

conditional_expression ? exp1 : exp2;

Examples:

max = a > b ? a : b;

System.out.println(a > b ? a : b);

cout << (a > b ? a : b)

Very compact, but can lead to overly cute code

Switch

switch (int_or_char_expression) {

case value1:

statement_list1; [break;]

case value2:

statement_list2; [break;]

…

case valuek:

statement_listk; [break;]

[default:

default statement_list;]

}

Arrays in Java

Declaration

Type[] v; // just declaration

Type[] v = new Type[size]; // adds definition

Type[] v = {c1, c2, c3, …, ck}; // size and values

Examples:

int[] list = { 7, 3, 10, 4, 12 };

// list is an object of type int[]

// list[2] is an int; here it’s value is 10

// list.length is 5; all array objects have length field

More About Arrays in Java

Arrays are objects, so passing an array via its name passes a handle to the array -- we do not make a copy.

The array elements can now be changed, but the array handle cannot be changed.

Arrays are 0-based indexed. Thus, an array list of size 3 has elements list[0], list[1], list[2]

for loops are often used to traverse arrays

for (int i=0; i<list.length; ++i) ++list[i]; // increment

for (int i=0; i<list.length;) ++list[i++]; // too cute

for (int i=-1; ++i<list.length;) ++list[i]; // too cute

Arrays in C++

Declaration

Type v[]; // just declaration

Type*v; // just declaration

Type v[10]; // v points to an array of Type of length 10 (static allocation)

Type v[] = new Type[size]; // adds definition based on dynamic allocation

Type v[] = {c1, c2, c3, …, ck}; // size and values

Examples:

int list[] = { 7, 3, 10, 4, 12 };

// list is an object of type int[]

// list[2] is an int; here it’s value is 10

More About Arrays in C++

Arrays are NOT objects, for that reason, the text uses the vector class template (see later discussion)

Arrays are 0-based indexed. Thus, an array list of size 3 has elements list[0], list[1], list[2]

for loops are often used to traverse arrays

T list[];

int length = sizeof list / sizeof(T)

for (int i=0; i<length; ++i) ++list[i]; // increment

for (int i=0; i<length;) ++(*list + i++); // way too cute

for (int i=-1; ++i<length;) ++list[i]; // too cute

Multiple Dimensions

Can have arrays of arrays

int[] [] a = { { 1, 2, 3 }, { 4, 5 } };

// this has two rows

// -- first has three columns

// -- second has two columns

Access by

a[0][2] is an int (value is 3)

a[1] is an array of ints (value is { 4, 5 })

a is an array of length 2

each element is an array of ints

in Java, a.length is 2; a[0].length is 3; a[1].length is 2

Homogeneity

All elements of an array are of the same type -- or at least of the same super type.

If we want to use String values in first row and integer values in second row,

we need to create an array of class Object, and then recast elements.

In Java, an int is not an Object, so we need to wrap int inside Integer, recast the object as Integer,

and then extract the int value -- aargh!!!

In Java

Alternatively, we can use Collections, e.g., ArrayList whose elements are themselves ArrayLists

An ArrayList is a class whose instances store elements in an indexed fashion.

We can also use Vector which is similar, but a bit old in the Java world

In C++

We can use a vector <type>. Vector is a template that produces distinct classes of vectors os a given type

Even a vector < vector <type> > for 2-d.

WEEK # 2
1. classes and objects (constructors)

2. is-a versus has-a; class versus parts hierarchy

3. protocols (services); levels of protection

4. encapsulation, polymorphism, dynamic binding, inheritance; abstract vs concrete classes

5. explicit pointers versus object handles

6. single vs multiple inheritance

7. genericity through interfaces and templates

8. argument passing

9. destructors and garbage collection (automatic versus user-directed)

10. Maximum Sublist (Contiguous Subsequence) Sum Problem

four solutions and their analyses

LAB REVIEW

11. Order Analysis (Big-O)

notion of witnesses c and n0; Example: Suppose f(n) is O(g(n)), show that max(f(n),g(n)) is O(g(n)).

12. Recursion and recurrence equations

Assignment # 2: Diagnostic Test (check off only). Problems 2.15, 2.17. Prove the correctness of Algorithm 4, Figure 2.8. This is individual work. If you have problems, see me. Turn in on Thursday, September 2.

Programming Assignment #1: Turn in on Thursday, September 9. Write a Java or C++ program that implements all four of the maximum contiguous subsequence algorithms shown in the text. Add instrumenting code that allows you to count the actual number of iterations and method calls performed. Analyze the results you get for values of N = 8, 32, 128 and 512, using randomly generated test values in the range [-15, 16]. Develop a table like that seen in Figure 2.13, providing a brief justification of the results you get. Of course your compares are to based on the appropriate theoretical bounds and comparison counts, not times.

Note: Most of your code is in the text and available in Java or C++.

Turn in: Source listing, analysis, floppy disk with source and executable (.cpp, .h, .exe in C++) (.java, .class and .jpr in Java.) Your name must appear in the header of each file. This is individual work. If you have problems, see me.

Vectors and Iterators in Java

import java.util.*;

public class VectorApp {

//Main method

public static void main(String[] args) {

Vector v = new Vector(3);

v.add(new Integer(5));

v.add(new Integer(2));

v.add(new Integer(7));

v.add(new Integer(8));

v.add(new Integer(12));

Iterator itr = v.iterator();

while (itr.hasNext())

System.out.println(((Integer) itr.next()).toString());

while (true);

}

}

Vectors and Iterators in C++

#include <iostream>

#include <string>

#include <vector>

using namespace std;

int main() {

vector<int> v(3);

v[0] = 5; v[1] = 2; v[2] = 7;
// [] really is an overridden operator

v.resize(4);

v[3] = 8;

v.push_back(12);

vector<int>::iterator first = v.begin();

vector<int>::iterator last = v.end();

while (first != last)

cout << *first++ << " ";

cout << endl;

cout << "theVector's size is: " << v.size() << endl;

cout << "theVector's maximum size is: " << v.max_size() << endl;

cout << "theVector's capacity is: " << v.capacity() << endl;

}

Java Applets and Applications

Application is a stand-alone program

Applet runs as a component of a browser

Application has full access to machine and network

Applet runs under tight security controls

Application must explicitly create a GUI interface

Applet gets support from browser

Application must be available on machine

Applet is accessed through normal web protocols

Class Applet

The class Applet provides lots of services.

In particular, all instances of Applet know how to respond to the messages

init() -- called when browser first encounters applet

start() -- called when browser visits page containing applet

stop() -- called when browser leaves page

destroy() -- called when browser decides applet is no longer relevant

paint(g) -- called when applet’s view is being uncovered, or originally shown

The default versions of these functions (provided by Applet) do nothing.

Applet inherits from Panel that provides a standard layout (FlowLayout)

Panel inherits from Container so it can add(aComponent) to its layout

Button, List, … are Components

Container inherits from Component which knows how to paint(g) its graphical appearance in Graphics context g

Hey -- an Applet is a Component and it has Components

This makes sense if you think about it

java.lang.Object

 |

+----java.awt.Component

 |

+----java.awt.Container

 |

+----java.awt.Panel

 |

+----java.applet.Applet

Hello World Applet

// Hello Applet and HTML

import java.applet.*;

public class Hello extends Applet { // extends means inherits

public void paint(Graphics g) {

g.drawRect(0, 0, 200, 48); // border

g.drawString("Hello from an applet.", 50, 32); // position in frame

}

}

Vocabulary:

import
opens up a library so we can use its classes

java.applet.*
all classes defined in the directory jdk??/java/applet/

public
accessible by clients of class

class
template and factory for objects of new ADT

extends
adds or overrides services from a parent class (super type)

Applet
the class defining standard applet services and parts

void
returns nothing

paint
called when Component image is originally drawn or must be repaired (uses clipping)

Graphics
the class associated with graphical contexts

DrawRect/String
a service of Graphics class which draws a rectangle/String

<HTML>

<HEAD><TITLE>Hello Applet</TITLE></HEAD>

<BODY>

<APPLET CODE = "Hello.class” WIDTH = 400 HEIGHT = 300></APPLET>

</BODY>

</HTML>

Hello World Application

/**

 * The HelloWorldApp class implements an application that

 * simply displays "Hello World!" to the standard output.

 */

class HelloWorldApp {

public static void main(String[] args) {

System.out.println("Hello World!"); //Display the string.

}

}

Vocabulary:

class
template and factory for objects of new ADT

public
accessible by clients of class

static
associated with class, not instances of class

void
returns nothing

main
start routine for any application

String[]
type of array of String objects

System
a class with global objects, one of which is 'in', another is 'out'

Note:

Main is automatically called when an application is started. The arguments are from command line.

Parameter Passing

In Java, all actual parameters are passed by value (copy).

That is, the formal parameter receives a copy of the actual one.

When the parameters are primitives, this limits modules to only returning a single value

-- the one returned as the function’s result.

When the parameters are objects, including arrays, the handle is copied, so you have access to all that is public.

In C++, actual parameters can be passed by value, by reference or by constant reference
void sort(bool ascending, vector<int> &result, const vector<int> &arr)

ascending is by value, result is by reference, arr is by constant reference (immutable)

Java is really a language of objects, not primitives.

Each object is an instance of a class, Java’s mechanism for data abstraction.

C++ tends to be a mixed bag of primitives and objects, BUT you can and should avoid this.

Java is very consistent, but does not provide good hints to compiler

C++ is a multiheaded monster, with all sorts of hints to compiler

const information is used by compiler to know about limits on side effects

BUT you can override const by making parts of a class mutable

Class and Objects

Classes

A class is an abstract data type (ADT).

A class (ADT) provides a new data type, along with services required to manipulate objects of this new type.

A class encapsulates (hides) the details of how it implements the new data type and its services.

A class exposes its name (for use as a new type), and the services that should be available to users of objects of this type.

The exposed services are referred to as the class’s protocol.

Objects

Each object is an instance of a class.

The class specifies the protocol (services) and parts (data structures) of its objects.

A class can be part of an inheritance hierarchy by which the class acquires some of its characteristics (parts and services) from its parent class.

All classes are descendants of the base class called Object.

Objects are constructed from classes via constructors (methods with class name).

A constructor is explicitly invoked as a result of the use of new.

It can also be implicitly invoked in C++ due to copy semantics.

In Java, objects are destroyed when there are no longer any handles that reference them.

This is automatic garbage collection, and is now done "on the fly."

In C++, you must explicitly use delete to deallocate space for an area allocated through new.

delete also causes the destructor (~ClassName()) method to be invoked.

The destructor should clean up, often invoking other deletes.

The space for automatic variables is, however, automatically reclaimed.

Java Constructor Example

public class Stack {

final static private int MaxStack = 10;
// static means a class variable; not one per object

private int size=0, capacity;

private Object contents[];

public Stack() {

this(MaxStack);

}

public Stack(int max) {

capacity = max; contents = new Object[max]; // notice this is a generic stack

}

… other services …

}

Stack s1 = new Stack();

// default of 10

Stack s2 = new Stack(5);

// choose 5 slots

s2 = s1;

// s2 and s1 are handles to same object; what s2 pointed to is swept up

C++ Constructor/Destructor Example / Class Templates

template <class Object>

class Stack {

public:

explicit Stack(int max=10) : capacity(max) { // explicit avoids implicit cast

size = 0; contents = new Object[capacity]; // notice this is a generic stack

}

Stack(const Stack &rhs) : contents(NULL) { // copy constructor used in call by value, return and initialization

operator=(rhs);

}

~Stack() {
// destructor

delete [] contents;

}

const Stack<Object> & operator=(const Stack<Object> &rhs) {

if (this != &rhs) {

delete [] contents;

capacity = rhs.capacity; // notice we have access to private parts

size = rhs.size;

// default shallow copy // contents = rhs.contents;

contents = new Object[capacity]; // deep copy

for(int k=0; k<size;k++) contents[k] = rhs.contents[k];

}

return *this;

}

… other services …

private:

int size, capacity; Object *contents;

}

Stack<int> s1(3); Stack<int> s2 = s1; Stack<int> s3(s1);

Stack<int> s4 = 7; // means Stack<int> tmp(7); s4 = tmp; // explicit blocks it

Java Number Class

Number is abstract. It specifies these services

public abstract class Number implements java.io.Serializable {

public abstract int intValue();

public abstract long longValue();

public abstract float floatValue();

public abstract double doubleValue();

public byte byteValue() {

return (byte)intValue();

}

public short shortValue() {

return (short)intValue();

}

}

Java Integer Class – an example of a subclass

// Integer is child of Number, and so inherits its parts and services, if any

public class Integer extends Number { // public means it’s exposed for use

private int value; // private means that it’s not known outside here

public Integer(int value) { // used to construct new Integer objects

this.value = value;

}

public int intValue() { // public means that’s its exposed for use

return value;

}

… …

}

// using Integer

Integer myInt = new Integer(7); // can use constructor since it’s public

int myIntVal = myInt.intValue(); // can use intValue() since it’s public

int myIntVal = myInt.value; // ILLEGAL since value is private
A C++ Example – Not a Great Hierarchy
// Create a hierarchy based on Humans who can identify themselves
#include <stream.h>

#include <string.h>

class Human {

protected:

// protected means exposed to hiers, not clients

char *name;

// All Humans have names

Human (char*);

// One constructor – not public, so no Humans

~Human(void) { delete name; }
// delete is C++ free; inline code for destructor

char* identify(void);

// All Humans can be identified

};

Human :: Human(char* Name) {

// :: is used to resolve scope to appropriate class

name = new char[strlen(Name)+1];
// returns pointer character array

strcpy(name,Name);

}

char* Human :: identify(void) {
char* buf = new char[strlen(name)+30];

sprintf(buf, "%s is a Human\n", name);

return buf;

}

A C++ Example - Page 2
// Employees are a kind of Human - Managers are a kind of Employee
class Employee : public Human { // public passes rights from super to subs

protected:
int yearsOfService;

Employee(char*, int);

// We can construct Employees

char* identify(void);

};

Employee :: Employee(char* Name, int Years) : Human(Name) { // Name is arg to superclass (Human) constructor

yearsOfService (Years) {}

char* Employee :: identify(void) {
char* buf = new char[strlen(name)+40];

sprintf(buf, "%s has been an Employee for %d years\n", name,yearsOfService);

return buf;

}

class Worker : Employee {

public:

Worker(char* Name, int Years) : Employee(Name,Years)) {};

};

class Manager : Employee {

public:

Manager(char* Name, int Years) : Employee(Name,Years)) {};

char* identify(void);

};

char* Manager :: identify(void) {
char* buf = new char[strlen(name)+47];

sprintf(buf, "%s is a Manager\n%s", name, Employee::identify());
// Also use Employee identify

return buf;

}

A C++ Example - Page 3
// StockHolders are a kind of Human
class StockHolder : Human {

protected:

int sharesHeld;

public:

StockHolder(char *Name,int Shares) : Human(Name) : sharesHeld(Shares) { };

char* identify(void);

};

char* StockHolder :: identify(void) {
char* buf = new char[strlen(name)+40];

sprintf(buf,"%s holds %d shares of our stock\n", name, sharesHeld);

return buf;

}

//
test classes to see who responds

main(void) {

Worker Joe("Joe Shmoe", 5);

Worker Jane("Jane Doe", 2);

StockHolder Mary("Mary Lamb",200);

Manager Leona("Leona Helmsley",27);

printf("%s%s%s%s", Joe.identify(), Jane.identify(),

Mary.identify();

Leona.identify();

}

Joe Shmoe has been an Employee for 5 years

Jane Doe has been an Employee for 2 years

Mary Lamb holds 200 shares of our stock

Leona Helmsley is a Manager

Leona Helmsley has been an Employee for 27 years

A C++ Example - Page 4
// Static Binding – A case where virtual is mandatory
class Human {
public:

Human(char*);

char* identify(void);

// What happens with no virtual?

protected:

char *name;

~Human(void) { delete name; }

};

main(void) {

int p;

Human* People[4];

Employee Joe("Joe Shmoe", 5);

Employee Jane("Jane Doe", 2);

StockHolder Mary("Mary Lamb",200);

Manager Leona("Leona Helmsley",27);

People[0] = (Human *) &Joe;People[1] = (Human *) &Jane;

People[2] = (Human *) &Mary; People[3] = (Human *) &Leona;

for (p=0;p<4;p++) printf("%s", People[p]->identify());
// wrong identify??

}

Joe Shmoe is a Human

Jane Doe is a Human

Mary Lamb is a Human

Leona Helmsley is a Human
A C++ Example - Page 5
// Dynamic Binding to the rescue
class Human {

public:

Human(char*);

virtual char* identify(void);
// virtual is in for dynamic binding

protected:

char *name;

~Human(void) { delete name; }

};

main(void) {

int p;

Human* People[4];

Employee Joe("Joe Shmoe", 5);

Employee Jane("Jane Doe", 2);

StockHolder Mary("Mary Lamb",200);

Manager Leona("Leona Helmsley",27);

People[0] = (Human *) &Joe;People[1] = (Human *) &Jane;

People[2] = (Human *) &Mary; People[3] = (Human *) &Leona;

for (p=0;p<4;p++) printf("%s", People[p]->identify());

}

Joe Shmoe has been an Employee for 5 years

Jane Doe has been an Employee for 2 years

Mary Lamb holds 200 shares of our stock

Leona Helmsley is a Manager

Leona Helmsley has been an Employee for 27 years

Encapsulation and the Complex Class

[image: image2.wmf]
Cartesian and Polar Representations

Encapsulation and the Complex Class
Change from Cartesian coordinates (x, y)
CLASS Complex IS

variables

double realPart

double imagPart

methods

void setRealImaginary(double r, double i)

double getReal()

double getImaginary()
to polar (r, q) and user need never know.

CLASS Complex IS

variables

double radius

double theta

methods

void setRealImaginary(double r, double i)

double getReal()

double getImaginary()
Polymorphism – What it is
Different classes respond to the same message by performing the same action.

•
All sorts of objects respond to add and print (asString in Java, cout << in C++)

However, a fraction’s add and print codes are different than those for a point in Cartesian space.

And both of those would differ from the add and print codes for a complex number.
Dynamic Binding – What it is
The method associated with a message to an object is based on the object’s class.

The class of an object cannot always be determined at compile-time.

Dynamic binding means that we select the method at run-time.

Polymorphism gives rise to the need for dynamic binding.

Use of Dynamic Binding

Display a UI component.

Components may be containers of components.

Each component of a container may be of a different type.

Moreover, the types of components may not be known until run time, and may vary during run time.

If wait until run-time, can select correct display method based on component type.

Object-Based versus Object-Oriented
Object-Based

Provides

classes

encapsulation

binding of operations to types

polymorphism

Lacks

inheritance

benefits from dynamic binding

Object-Oriented

Provides all that is Object-Based plus

inheritance

extends in Java; colon (:) in C++

dynamic binding

Some OO languages support both static and dynamic binding

need dynamic for effective use of collections of related objects

C++ has notions of non-virtual, virtual and pure virtual

Java is dynamic, but requires casts to inform the compiler about subtypes

Inheritance
Supports reuse

Helps to maintain consistency

In Java, we say a class extends another

It is important that a subclass not restrict its parent’s protocol

this can break ability to have collections of objects sharing a common base protocol

Inheritance as an “is-a” relation

Subclasses are “heirs” of their superclasses

Abstract vs Concrete Classes

Abstract classes are internal nodes in hierarchy

Concrete classes are commonly leaf nodes

Abstract classes exist for their heirs

Concrete classes exist for their clients

Java uses single inheritance

augmented with interfaces

C++ uses multiple inheritance

augmented with templates

Protection
Java (and C++ if you ignore package)

	Specifier
	Class
	Subclass
	Package
	World

	Private
	X
	
	
	

	Protected
	X
	X
	X
	

	Package
	X
	
	X
	

	Public
	X
	X
	X
	X

C++

Uses public, private and protected section

Can and should separate declaration (.h) from implementation (.cpp)

Allows a class to declare its friends, classes and methods (friends can access private parts and methods)

Parts should be private

Contract services (protocol) are public

Protected means services are for your heirs

Package is a "friends" relationship

Collections
Object

AbstractCollection

// add(Object), addAll(Collection), clear(), contains(Object), containsAll(Collection), equals(Object), hashCode(),

// isEmpty(), iterator(), remove(Object), removeAll(Collection), retainAll(Collection), size(), toArray(), toString()

AbstractSet

HashSet

TreeSet implements SortedSet

AbstractMap

HashMap

TreeMap

AbstractList

AbstractSequentialList

ArrayList

Vector (actually this is a bit old fashion)

Stack // BARF!!!!!!!!
The Placement of Stack is an historical aberration.

There are also classes Dictionary and its descendant HashTable which are reimplemented as Maps.

C++ does its collection as Template container classes. All containers respond to empty(), begin(), end(), size()

	Sequence Containers
	Vector

	
	Deque

	
	List

	Associative Containers
	Set

	
	Multiset

	
	Map

	
	Multimap

Quality Characteristics of Hierarchies
Deep is better than wide

Extend, never restrict

When overriding, keep basic semantics the same

Collection and Exceptions Hierarchy are Examples of Good Hierarchies

[image: image3.png]Thiowable

Exception

RurtineException

Inheritance Pluses and Minuses
Pluses

Reusability (design and code)

Protocol Consistency (e.g., in Components)

Software ICs

Rapid Prototyping

Frameworks (e.g., model, view, controller)

Information Hiding

Lightweight Methods

Minuses

Speed (generally overrated)

Premature optimization is deadly

Size (if must carry many base classes)

Message passing overhead (higher in untyped languages)

Complexity (yo-yo problem)

Object Handles versus Pointers
In OO languages like Java, an object is always referenced by variables that contain handles to the object.

To get at the object, we send messages to it through one of its handles.

We never explicitly dereference the handle as we do with pointers.

To change what a variable references, we assign it to reference another object, either by copying an existing handle or by dynamically creating a new object and copying its handle.

When an object is passed to a method, a handle is replicated. This greatly affects the way we write code to achieve the effects of the many algorithms.

Java – Some Common Interfaces
Some Common interfaces are:

Runnable : must implement

void run()

ActionListener extends EventListener: must implement

void actionPerformed(ActionEvent e);

MouseListener extends EventListener: must implement

void mouseClicked(MouseEvent e);

public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);

Collection: must implement

int size();
boolean isEmpty();

boolean contains(Object o);
Iterator iterator();

Object[] toArray();
Object[] toArray(Object a[]);

boolean add(Object o);
boolean remove(Object o);

boolean containsAll(Collection c);
boolean addAll(Collection c);

boolean removeAll(Collection c);
boolean retainAll(Collection c);

void clear();
int hashCode();

Iterator: must implement

boolean hasNext();

Object next();

void remove();

Java – A Simple Abstract Implementation of an Interface
public abstract class MouseAdapter implements MouseListener {

// Invoked when the mouse has been clicked on a component.

public void mouseClicked(MouseEvent e) {}

// Invoked when a mouse button has been pressed on a component.

 public void mousePressed(MouseEvent e) {}

// Invoked when a mouse button has been released on a component.

public void mouseReleased(MouseEvent e) {}

// Invoked when the mouse enters a component.

public void mouseEntered(MouseEvent e) {}

// Invoked when the mouse exits a component.

public void mouseExited(MouseEvent e) {}

}

C++ -- Nice Classes
Nice Classes. For STL it’s wise to create classes that meet the requirements of Nice Classes.

A class T is called nice iff it supports:

1. Copy constructor

T (const T&)
2. Assignment operator
T& operator= (const T&)
3. Equality operator

int operator== (const T&, const T&)
4. Inequality operator

int operator!= (const T&, const t&)
such that:

1. T a(b); assert (a == b);
2. a = b; assert (a == b);
3. a == a;
4. a == b iff b == a
5. (a == b) && (b == c) implies (a == c)
6. a != b iff ! (a == b)
A member function T::s(...) is called equality preserving iff

a == b implies a.s (...) == b.s (...)

A class is called Extra-Nice iff

all of its member functions are equality preserving

C++ -- Templates and Generic Methods / Classes
template <class T>

void swap (T& a, T& b) {

T tmp = a;

a = b;

b = tmp;

}

template <class T>

class vector { // Trivialized Version

T* v;

int sz;

public:

vector (int s) { v = new T [sz = s]; }

(vector () { delete[] v; }

T& operator[] (int i) { return v[i]; }

int get_size() { return sz; }

};

Max SubList Problem in C++
#include <iostream.h>

#include "vector.h"

// Cubic maximum contiguous subsequence sum algorithm.

int maxSubSum1(const vector<int> & a) {

int maxSum = 0;

for(int i = 0; i < a.size(); i++)

for(int j = i; j < a.size(); j++) {

int thisSum = 0;

for(int k = i; k <= j; k++) thisSum += a[k];

if(thisSum > maxSum) maxSum = thisSum;

}

return maxSum;

}

// Quadratic maximum contiguous subsequence sum algorithm.

int maxSubSum2(const vector<int> & a) {

int maxSum = 0;

for(int i = 0; i < a.size(); i++) {

int thisSum = 0;

for(int j = i; j < a.size(); j++) {

thisSum += a[j];

if(thisSum > maxSum) maxSum = thisSum;

}

}

return maxSum;

}

// Return maximum of three integers.

int max3(int a, int b, int c) {

return a > b ? a > c ? a : c : b > c ? b : c;

}

Max SubList Problem in C++ -- #2
/** DIVIDE AND CONQUER

* Recursive maximum contiguous subsequence sum algorithm.

* Finds maximum sum in subarray spanning a[left..right].

* Does not attempt to maintain actual best sequence.

*/

int maxSumRec(const vector<int> & a, int left, int right) {

if(left == right) // Base case

if(a[left] > 0) return a[left];

else return 0;

int center = (left + right) / 2;

int maxLeftSum = maxSumRec(a, left, center);

int maxRightSum = maxSumRec(a, center + 1, right);

int maxLeftBorderSum = 0, leftBorderSum = 0;

for(int i = center; i >= left; i--) {

leftBorderSum += a[i];

if(leftBorderSum > maxLeftBorderSum) maxLeftBorderSum = leftBorderSum;

}

int maxRightBorderSum = 0, rightBorderSum = 0;

for(int j = center + 1; j <= right; j++) {

rightBorderSum += a[j];

if(rightBorderSum > maxRightBorderSum) maxRightBorderSum = rightBorderSum;

}

return max3(maxLeftSum, maxRightSum,maxLeftBorderSum + maxRightBorderSum);

}

// Driver for divide-and-conquer maximum contiguous subsequence sum algorithm.

int maxSubSum3(const vector<int> & a) {

return maxSumRec(a, 0, a.size() - 1);

}

Max SubList Problem in C++ -- #3
// Linear-time maximum contiguous subsequence sum algorithm.

int maxSubSum4(const vector<int> & a) {

int maxSum = 0, thisSum = 0;

for(int j = 0; j < a.size(); j++) {

thisSum += a[j];

if(thisSum > maxSum) maxSum = thisSum;

else if(thisSum < 0) thisSum = 0;

}

return maxSum;

}

// Simple test program.

int main() {

vector<int> a(8);

a[0] = 4; a[1] = -3; a[2] = 5; a[3] = -2;

a[4] = -1; a[5] = 2; a[6] = 6; a[7] = -2;

int maxSum;

maxSum = maxSubSum1(a);

cout << "Max sum is " << maxSum << endl;

maxSum = maxSubSum2(a);

cout << "Max sum is " << maxSum << endl;

maxSum = maxSubSum3(a);

cout << "Max sum is " << maxSum << endl;

maxSum = maxSubSum4(a);

cout << "Max sum is " << maxSum << endl;

return 0;

}

Max SubList Problem in Java
public final class MaxSumTest {

// Cubic maximum contiguous subsequence sum algorithm.

public static int maxSubSum1(int [] a) {

int maxSum = 0;

for(int i = 0; i < a.length; i++)

for(int j = i; j < a.length; j++) {

int thisSum = 0;

for(int k = i; k <= j; k++) thisSum += a[k];

if(thisSum > maxSum) maxSum = thisSum;

}

return maxSum;

}

// Quadratic maximum contiguous subsequence sum algorithm.

public static int maxSubSum2(int [] a) {

int maxSum = 0;

for(int i = 0; i < a.length; i++) {

int thisSum = 0;

for(int j = i; j < a.length; j++) {

thisSum += a[j];

if(thisSum > maxSum) maxSum = thisSum;

}

}

return maxSum;

}

// Return maximum of three integers.

private static int max3(int a, int b, int c) {

return a > b ? a > c ? a : c : b > c ? b : c;

}

Max SubList Problem in Java -- #2
/** DIVIDE AND CONQUER

* Recursive maximum contiguous subsequence sum algorithm.

* Finds maximum sum in subarray spanning a[left..right].

* Does not attempt to maintain actual best sequence.

*/

private static int maxSumRec(int [] a, int left, int right) {

if(left == right) // Base case

if(a[left] > 0) return a[left];

else return 0;

int center = (left + right) / 2;

int maxLeftSum = maxSumRec(a, left, center);

int maxRightSum = maxSumRec(a, center + 1, right);

int maxLeftBorderSum = 0, leftBorderSum = 0;

for(int i = center; i >= left; i--) {

leftBorderSum += a[i];

if(leftBorderSum > maxLeftBorderSum) maxLeftBorderSum = leftBorderSum;

}

int maxRightBorderSum = 0, rightBorderSum = 0;

for(int i = center + 1; i <= right; i++) {

rightBorderSum += a[i];

if(rightBorderSum > maxRightBorderSum) maxRightBorderSum = rightBorderSum;

}

return max3(maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum);

}

// Driver for divide-and-conquer maximum contiguous subsequence sum algorithm.

public static int maxSubSum3(int [] a) {

return maxSumRec(a, 0, a.length - 1);

}

Max SubList Problem in Java -- #3
// Linear-time maximum contiguous subsequence sum algorithm.

public static int maxSubSum4(int [] a) {

int maxSum = 0, thisSum = 0;

for(int j = 0; j < a.length; j++) {

thisSum += a[j];

if(thisSum > maxSum) maxSum = thisSum;

else if(thisSum < 0) thisSum = 0;

}

return maxSum;

}

// Simple test program.

public static void main(String [] args) {

int a[] = { 4, -3, 5, -2, -1, 2, 6, -2 };

int maxSum;

maxSum = maxSubSum1(a);

System.out.println("Max sum is " + maxSum);

maxSum = maxSubSum2(a);

System.out.println("Max sum is " + maxSum);

maxSum = maxSubSum3(a);

System.out.println("Max sum is " + maxSum);

maxSum = maxSubSum4(a);

System.out.println("Max sum is " + maxSum);

// wait for Control-C

System.out.println("Press Ctrl-C to Quit");

while (true);

}

}

Order

Big-Oh

Suppose f(n) is O(g(n)), show that max(f(n),g(n)) is O(g(n)).

By definition of big-Oh notation,

(c0>0, n0>0 such that, (n(n0, f(n)(c0g(n)

To show that max(f(n),g(n)) is O(g(n)), we must demonstrate the existence of c1>0, n1>0, such that(n(n1, max(f(n),g(n))(c1g(n)

Define c1 = max(1,c0) and n1 = n0. and let n be an arbitrary integer (n1.

max(f(n),g(n)) is either f(n) or g(n).

But, f(n)(c0g(n)(c1g(n), and

g(n)(1(g(n)(c1g(n), since c1 = max(1,c0).

Thus, we have shown that max(f(n),g(n)) is O(g(n)), as was desired.

Timing Analysis of MergeSort Algorithm -- Intuititive

Assume that the merge of two lists of total size N/2 takes order N time.

T(1) = a

T(N) = 2 T(N/2) + b N + c

T(N) = 2 (2 T(N/22) + b N/2 + c) + b N + c

T(N) = 22 T(N/22) + 2 b N + 3 c

T(N) = 22 (2 T(N/23) + b N/22 + c) + 2b N + 3 c

T(N) = 23 T(N/23) + 3 b N + 7 c

…

T(N) = 2k T(N/2k) + k b N + (2k–1) c

If we assume that N = 2k, for some k(0, then for this k, N/2k is 1, and we hypothesize that T(N) = 2k a + k b 2k + (2k–1) c. To verify this hypothesis, we need to provide an inductive proof, showing that for k(0,

Timing Analysis of MergeSort Algorithm -- Formal

Again, assume that N = 2k, for some k(0. We hypothesize that T(N) = 2k a + k b 2k + (2k–1) c. To verify this hypothesis, we need to provide an inductive proof, showing that for k(0,

S(k): T(2k) = 2k a + k b 2k + (2k–1) c.

Basis – S(0):

T(1) = a by definition and 20 a + 0 b 20 + (20–1) c = a
Inductive Hypothesis:

Assume S(k), that is, T(2k) = 2k a + k b 2k + (2k–1) c, for some k≥0.

Inductive Step: Show S(k+1), given S(k).

T(2k+1) = 2 T(2k) + b 2k+1 + c by definition. Thus,
T(2k+1) = 2 (2k a + k b 2k + (2k–1) c) + b 2k+1 + c by induction hypothesis. Then
T(2k+1) = 2k+1 a + k b 2k+1 + 2 (2k–1) c + b 2k+1 + c and, consequently
T(2k+1) = 2k+1 a + (k+1) b 2k+1 + (2k+1–1) c , as we wished to show.
The terms with constants a and c are of order N. The term with constant b is of order
N log2N and thus dominates. Hence a MergeSort takes O(N log2N) time, at worst.

More Solutions to Recurrences

Table to help solve standard recurrences

	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk logd n)

Consider

a.) T(N) = T(N-1) + N2
O(N3)
b.) T(N) = 2T(N-1) + 1
O(2N)
c.) T(N) = 2T(N/2) + 1
O(N)
d.) T(N) = T(N/2) + N
O(N)
e.) T(N) = 2T(N/2) + N
O(N lg N)
f.) T(N) = T(N/2) + 1
O(lg N)
Summation / Recurrence Examples
1. Show that
[image: image4.wmf]2

/

)

2

(

)

2

/

)

1

(

(

2

3

1

n

n

n

n

n

i

n

i

+

+

=

+

+

å

=

We can break this summation into two parts, the first containing only the term i, and the second containing n(n+1)/2.

The first summation
[image: image5.wmf]å

=

n

i

i

1

is well known to be n(n+1)/2.

Since the second term is independent of the summation index, its value is just n times the term, which is n2(n+1)/2.

Adding and expanding these terms we get (n3+ n2+n)/2 as was desired.

2. T(1) = 1; T(N) = 3NT(N/2), N>1.

One easy approach is to restate the definition of T on inputs of powers of 2.

T(20) = 1, T(2k) = 32kT(2k-1), for k>0.

So, for k>1,

T(2k) = 32k32k-1T(2k-2) = 32k+2k-1T(2k-2)

 = 32k+2k-1+…+21T(20) = 32k+1-2
by prior analysis of sums of powers of 2

For N = 2k, can restate as T(N) = 32n–2
We must now provide an inductive proof of the above.

S[i] is the statement that T(2i) = 32i+1-2

Basis: S[0] is the statement that T(20) = T(1) = 320+1-2 = 30 = 1.

But, T(20) = 1 by definition, and so S[0] is true.

IH: Assume S[i] for all i<k, for some k>0. That is, T(2i) = 32i+1-2 for all i<k.

IS: Prove S[k].

T(2k) = 32kT(2k-1), by definition of T.

= 32k32k-1+1-2, by IH

= 32k+2k-2, by simple algebra

= 32k+1-2, by more simple algebra

But, this is exactly S[k], and the hypothesis is verified.

More Summation / Recurrence Examples
3. Let T(N) = T(N–1) + g(N), for N>1. Prove by induction that, if 1 (i < N, then
T(N) = T(N-i) +

We use the notation S(i), 1 (i < N, to denote the above assertion.
Basis: S(1) –

T(N)
= T(N-1) + g(N)

by definition

 = T(N-1) +

by definition of summation

= T(N-i) +

for i=1
IH: Assume S(i) for some i, 1 (i < N, that is, T(N) = T(N-i) +

IS: Prove S(i+1), 1 (i < N, given S(i) and definition of T(N).

T(N)
= T(N-i) +

by induction hypothesis, and

T(N-i) = T(N-i-1) + g(N-i)

by the definition of T. Combining these,

T(N)
= T(N-i-1) + g(N-i) +

= T(N-(i+1)) +

and this is just S(i+1), as was desired.

More, More
4. Let T(N) = T(N/2) + g(N), for N>1. For all of these c=1, d=2.

a.) g(n) = n2. k=2, so c=1 < 4 = dk, and thus line 4 of table applies. O(nk) = O(n2)

b.) g(n) = 2n. k=1, so c=1 < 2 = dk, and thus line 4 of table applies. O(nk) = O(n)

c.) g(n) = 10. k=0, so c=1 = 1 = dk, and thus line 5 of table applies. O(nk lg n) = O(lg n)

d.) g(n) = n lg n. Assume n is a power of 2.

T(2k) = 2k (k) + 2k-1 (k-1) + … + 2 (1) + 1 (0) + a = a +
[image: image6.wmf]å

=

k

i

i

i

1

2

S =
[image: image7.wmf]å

=

k

i

i

i

1

2

 = k 2k + (k-1) 2k-1 + (k-2) 2k-2 + … + 1 21

2S =
[image: image8.wmf]å

=

k

i

i

i

1

2

 = k 2k+1 + (k-1) 2k + (k-2) 2k-1 + … + 1 22

2S – S = k 2k+1 - 2k - 2k-1 - … - 1 21 = k 2k+1 - 2k+1 - + 2 = (k-1) 2k+1 + 2

Thus, T(2k) = a + (k-1) 2k+1 + 2

The above still involves some magic, or shall we say unsubstantiated reasoning. We can now either prove that the expansion is correct, or prove the result is correct. We will do the latter.

S(i) is the statement that T(2i) = a+ (i-1) 2i+1 + 2

Basis: S(0). a + (k-1) 2k+1 + 2 = a+ (-1) 21 + 2 = a+ 2 – 2 = a = T(1)

IH: Assume S[i] for all i<k, for some k>0. That is, T(2i) = a + (i-1) 2i+1 + 2 for all i<k.

IS: Prove S[k].

T(2k) = T(2k-1) + k 2k, by definition of T.

= a + (k-2) 2k + 2 + k 2k, by inductive hypothesis.

= a + (2k-2) 2k + 2, by regrouping.

= a + (k – 1) 2k+1 + 2, by refactoring.

But, this is S(k), which is what we desired.

The consequence of this is that T(n) = a + (lg n – 1) n + 2 = O(n lg n), and this is a tight bound.

e.) g(n) = 2n.

T(n) = 2n + 2n/2 + 2n/4 … + 21 + a

Clearly T(n) > 2n, so O(2n) is a lower bound.

We claim that T(n) is less than a + 2n+1, thus showing O(2n) is an upper bound.

This combination shows that O(2n) is a tight bound.

Now to deal with our claim, we let S(i) be the statement that T(2i) < a +
[image: image9.wmf]i

2

2

.

Basis: S(0). a + 21 > a = T(1)

IH: Assume S[i] for all i<k, for some k>0. That is, T(2i) < a +
[image: image10.wmf]1

2

2

+

i

 for all i<k.

IS: Prove S[k]. Let n=2k. By definition, T(n) = T(n/2)+2n. Note, T(n/2) is T(2k-1).

But then by IH, T(n) < a + 2n+2n. = a + 2n+1. But this was what we needed to prove.

WEEK # 3A
1. Proofs of correctness (usually induction or contradiction)

Comments about assignment to prove linear max sublist sum works

2. More Order Analysis (Big-O, Omega, Theta, little-o)

3. Analysis of parllel algorithms (time, speedup, cost, work, cost efficiency, work efficiency)

4. Algorithm classifications

greedy, divide and conquer, dynamic programming

relate to approaches on max sublist sum problem

amortization

sort before searches as example

5. The notion of an abstract data type (ADT) is that it consists of an encapsulated state and a set of behaviors that are invoked by messages (operators, procedure and function calls.) The ADT must specify semantics of messages, but not their implementations. Examples: sequences, stacks, queues, priority queues, sets, bags

6. An abstract implementation is a data model specifying some abstract organization of data (an ADT’s state), e.g., a list, a binary tree, a binary search tree, a priority ordered tree, a graph, etc.

7. A data structure is the way we represent an abstract implementation. For example, a list can be represented by an array of data items or by a linked list of data items. Examples are linked lists, arrays and heaps

8. An algorithm is used to describe a method for implementing a behavior. Algorithms can be at various levels of abstraction, depending upon our needs.

9. Programming languages must provide ways for us to extend the available data models. Thus, we usually see arrays and records, though not always. Some languages directly support trees or lists and expect that you can do everything with them.

10. An undirected graph is a very useful data model. The data structure for a graph might be an adjacency list or an adjacency matrix. The adjacency matrix approach uses an N by N matrix of binary values, where there are N nodes. If nodes I and J are connected, then the I,J position and the J,I position contain a 1, else these positions contain a 0. This is a bit redundant, so we often find a way to represent by some sparse matrix or we use an adjacency list. There are definite tradeoffs in space and time.

11. The choice of a data structure and the corresponding algorithms depends on many things. Some of these are:
SPACE EFFICIENCY
TIME EFFICIENCY
PERSONAL OR TEAM PREFERENCE
EASE IN A GIVEN LANGUAGE
REUSE (IT’S ALREADY BEEN DONE IN SOME ACCEPTABLE WAY)

WEEK # 3B
12. List data model. Implementing lists by linked list data structures: singly linked versus doubly linked; circular, cursor.

Implementing lists by array data structures; use of sentinel to reduce constant factor on linear search; binary search of sorted list

head (element), tail (list), sublist, empty list, prefix, suffix; element position, first, last, follows, precedes

operations: insert, delete, lookup, sort, merge (two lists to one), spilt (one to two), concatenate, first, last, head, tail, retrieve ith, length, isEmpty, isNotEmpty

sublist versus subsequence

multilists

13. Common Abstract Data Types that can be associated with List data model

Stack – clear, isEmpty, isFull, push, pop

Queue – clear, isEmpty, isFull, enqueue, dequeue

Deque – clear, isEmpty, isFull, addFront, removeFront, addRear, removeRear

array and linked list implementations

14. Collections of heterogeneous elements in a single stack or queue

Polymorphism in action

No need to alter clients’ code whether implemented as arrays or linked lists

Encapsulation in action

15. Longest Common Subsequence Problem – dynamic programming

Compare naive approach (exponential) versus dynamic programming (quadratic)

16. Programming Assignment #2: Turn in on Tuesday, September 21..Write a program in Java or C++ to solve the longest increasing subsequence problem. This is actually posed in the text as problem 10.53. Your program reads a sequence of n integers, and produces all longest increasing subsequences. Be sure to do this using an O(n2) algorithm (dynamic programming).

Order

Big-Oh

f(n) is O(g(n)), iff
(c0>0, n0>0 such that, (n(n0, f(n)(c0g(n)

c0 and n0 are called witnesses

O notation sets an upper bound, which we may or may not be able to beat

Omega

f(n) is ((g(n)), iff
(c0>0, n0>0 such that, (n(n0, f(n)(c0g(n)

c0 and n0 are called witnesses

(notation sets a lower bound, which we may or may not be able to achieve

For example, the max sublist sum problem is ((N), because we need to inspect sequence

Theta

f(n) is ((g(n)), iff f(n) is O(g(n)), and f(n) is ((g(n))
(notation sets a tight bound (upper and lower bound)

For example, the max sublist sum problem is ((N)

Little-Oh

f(n) is o(g(n)), iff f(n) is O(g(n)), but g(n) is not O(f(n)); also can say is not ((g(n))
o notation is a true upper bound (g dominates f, but f does not dominate g)

also, can define as lim n(([f(n)/g(n)] = 0

We will emphasize Big-Oh, with some use of Omega and Theta.

A Model of parallel Computation

Fixed Connection Network

•
Processors Labeled P1, P2, … , PN

•
Each Processor knows its Unique ID
•
Local Control

•
Local Memory

•
Fixed Bi-directional Connections

•
Synchronous

Global Clock Signals Next Phase

Operations at Each Phase

Each Time the Global Clock Ticks

•
Receive Input from Neighbors

•
Inspect Local Memory

•
Perform Computation

•
Update Local Memory

•
Generate Output for Neighbors

A Model of Cooperation: Bucket Brigades

[image: image11.wmf]…

P

1

P

2

P

3

P

N

Commonly Called a Systolic Array

•
N Processors, Labeled P1 to PN
•
Processor Pi is connected to Pi+1, i<N
A Sort Algorithm

Odd-Even Transposition on Linear Array

[image: image12.wmf]…

P

1

P

2

P

3

P

N

•
The Array is X[1 : N]
•
Pi's Local Variable X is X[i]
•
Pi's have Local Variables Step and Y
•
Step is Initialized to Zero (0) at all Pi
•
Compares and Exchanges are Done
Alternately at Odd/Even - Even/Odd Pairs

Odd-Even Transposition

Algorithmic Description of Parallel Bubble Sort

• At Each Clock Tick and For Each Pi do

Step := Step+1;

if parity(i) = parity(Step) & i < N then

Read from Pi+1 to Y;

X := min(X,Y)

else if i > 1 then

Read from Pi-1 to Y;

X := max(X,Y);

Example of Parallel Bubble Sort

Sort 4 Numbers 7, 2, 3, 1 on an Array of 4 Processors

[image: image13.wmf]1

7

3

2

2

3

1

7

7

1

3

2

2

3

7

1

Case of 4, 3, 2, 1 Takes 4 Steps

Measuring Benefits of Parallel Algorithms

How Do We Measure What We Have Gained?

•
Let T1(N) be the Best Sequential Algorithm

•
Let TP(N) be the Time for Parallel Algorithm (P processors)

•
The Speedup SP(N) is T1(N)/TP(N)
•
The Cost CP(N) is P(TP(N), assuming P processors

•
The Work WP(N) is the summation of the number of steps taken by each of the processors. It is often, but not always, the same as Cost.

•
The Cost Efficiency CE P(N) (often called efficiency Ep(N)) is

SP(N)/P = C1(N) / CP(N) = T1(N) / (P(TP(N))

•
The Work Efficiency WE P(N) is

W1 (N) / WP (N) = T1 (N) / WP (N)
Napkin Analysis of Parallel Bubble

How'd We Do ? - Well, Not Great !

•
T1(N) = N lg N
Optimal Sequential

•
TN(N) = N
Parallel Bubble

•
SN(N) = lg N
Speedup

•
CN(N) = WN(N) = N2
Cost and Work

•
EN(N) = lg N / N
Cost and Work Efficiency

But Good Relative to Sequential Bubble
SN(N) = N2/N = N ; EN(N) = SN(N) /N = 1 !

Non-Scalability of Odd-Even Sort
Assume we start with 1 processor sorting 64 values, and then try to scale up by doubling number of values (N), each time we double number of processors (P) in a ring. The cost of the parallel sort requires each processor to sort its share of values (N/P), then do P swaps and merges. Since P processors are busy, the cost is N lg N/P. After the local sort, sets are exchanged, merged, and parts thrown away. The merge costs N/P on each of P processors, for a Cost of N, and P-1 such merges occur, for a total cost of N((P-1). Efficiency is then

E = N lg N / (N lg N/P + N((P-1)) = lg N / (P - 1 + lg N - lgP)

First 2 columns double N as P doubles. Second three try to increase N to keep efficiency when P doubles.

	N
	P
	E
	
	N
	P
	E

	64
	1
	1.0000
	
	64
	1
	1.0000

	128
	2
	1.0000
	
	4096
	2
	1.0000

	256
	4
	0.8889
	
	16777216
	4
	0.9600

	512
	8
	0.6923
	
	2.81475E+14
	8
	0.9231

	1024
	16
	0.4762
	
	7.92282E+28
	16
	0.8972

	2048
	32
	0.2973
	
	6.2771E+57
	32
	0.8807

	4096
	64
	0.1739
	
	3.9402E+115
	64
	0.8707

	8192
	128
	0.0977
	
	1.5525E+231
	128
	0.8649

Classification of Algorithms

Classification of Algorithms

Divide and Conquer – Searching, Sorting, Multiplication, Parsing

Greedy

Scheduling, cost optimizing while spanning a circuit, bin packing

Dynamic Programming

Divide and conquer to its extreme

Divide and Conquer

The problem is either small and easy to solve, or it can be naturally broken up into several sub-problems, each of which can be solved by the exact same approach as was applied to the original problem.

When the sub-problems have been solved, it is possible to merge the solutions into one that is correct for the larger original problem.

Thus, we look for three characteristics:

(a)
Easy to split into sub-problems;

(b)
Sub-problems are simpler instances of original;

(c) Sub-problem results can be easily combined to solve the original problem.

D&C -- Algorithmic Form

algorithm p (s);

if (small (s)) then return easy_attack (s);

else {

[s1, s2 , ... , sk] = divide (s);

return (combine (p(s1), p(s2), …, p(sk)))

}

In some cases, we can divide and immediately reject one sub-problem, pursuing only the other. BST search is such an example.

Our third solution to max sublist sum is also a divide and conquer approach.

Greedy

Want to Max or Min some objective function.

Solution must satisfy some feasibility constraint.

Any solution satisfying constraints is feasible.

A feasible solution that maxes or mins the objective is optimal.

Greedy solutions are often sub-optimal, but are always feasible solutions.

For example, First Fit BinPacking never overfills a trunk, so it always returns a feasible solution.

Its solutions are, however, not guaranteed to be optimal.

Greedy -- Algorithmic Form

solution = { };

for (int i = 1 ; i <= numberOfChoices; i++) {

x = select (a); // where select is simple

if (feasible (solution (x))

solution = solution (x;

}

return solution;

Our fourth solution to max sublist sum is a greedy approach.

Dynamic Programming

Based on "Principal of Optimality"

Technique requires that a problem have multiple stages at which decisions are made. We talk about stage i, and indicate that the system is in state i.

The Principal of Optimality says that the choice that is made at this stage is dependent only on state i and not on the policy that was used to make decisions at stages 1 to i-1.

Stated differently – the solution from stage i to n (the last stage) must be optimal in order for 1 to n to be optimal.

Longest Common Subsequence

A sublist refers to a subsequence that was contiguous in the original list. The LCS problem is not about sublists, it's about subsequences, which are sequences formed by crossing out zero of more of the items in the original list. What remains is not necessarily a contiguous piece of the original list.

The longest common subsequence of two lists is not necessarily unique.

An obvious approach to finding subsequences is a recursive one that essentially tries everything, taking no advantage of any information gleaned from other inspections of the lists.

Dynamic programming approach uses fact that we can build optimal solutions from ones that are optimal on subproblems. When we are working with pairs of lists, this is often done by building a table, where the i,j position in the table relates to the i-th element in one list and the j-th element in the other list.

LCS Table Building

for (j = 0; j<=n; j++)

lcsTable[0][j] = 0;

for (i = 1; i <= m; i++) {

lcsTable[i][0] = 0;

for (j = 1; j <= n; j++)

if (a[i] != b[j])

lcsTable[i][j] = Math.max(lcsTable[i-1][j], lcstable[i][j-1]);

else

lcsTable[i][j] = lcsTable[i-1][j-1] + 1;

}

LCS Table Template

	c
	6
	0
	
	
	
	
	
	
	

	a
	5
	0
	
	
	
	
	
	
	

	b
	4
	0
	
	
	
	
	
	
	

	a
	3
	0
	
	
	
	
	
	
	

	b
	2
	0
	
	
	
	
	
	
	

	c
	1
	0
	
	
	
	
	
	
	

	
	0
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	0
	1
	2
	3
	4
	5
	6
	7

	
	
	
	a
	b
	c
	a
	b
	b
	a

Strings are:

a b c a b b a

c b a b a c

LCS Table Filled and Followed

	c
	6
	0
	1
	2
	3
	3
	3
	3
	4

	a
	5
	0
	1
	2
	2
	3
	3
	3
	4

	b
	4
	0
	1
	2
	2
	2
	3
	3
	3

	a
	3
	0
	1
	1
	1
	2
	2
	2
	3

	b
	2
	0
	0
	1
	1
	1
	2
	2
	2

	c
	1
	0
	0
	0
	1
	1
	1
	1
	1

	
	0
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	0
	1
	2
	3
	4
	5
	6
	7

	
	
	
	a
	b
	c
	a
	b
	b
	a

Strings are:

a b c a b b a

c b a b a c

LCS is c b b a

LCS Table Building

	c
	6
	0
	1
	2
	3
	3
	3
	3
	4

	a
	5
	0
	1
	2
	2
	3
	3
	3
	4

	b
	4
	0
	1
	2
	2
	2
	3
	3
	3

	a
	3
	0
	1
	1
	1
	2
	2
	2
	3

	b
	2
	0
	0
	1
	1
	1
	2
	2
	2

	c
	1
	0
	0
	0
	1
	1
	1
	1
	1

	
	0
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	0
	1
	2
	3
	4
	5
	6
	7

	
	
	
	a
	b
	c
	a
	b
	b
	a

Strings are:

a b c a b b a

c b a b a c

LCS is b a b a

Abstract Data Types
Definition: (B. Meyer)

... an abstract data type specification describes a class of data … not by an implementation, but by a list of services available on the data …, and the formal properties of those services.

•
An ADT is a behavioral specification for objects

Stacks as an Abstract Data Type
TYPES

STACK[X]
FUNCTIONS

empty:
STACK[X]  BOOLEAN

new:
 STACK[X]
push:
X  STACK[X]  STACK[X]
pop:
STACK[X] | STACK[X]
top:
STACK[X] | X
PRECONDITIONS

pre pop (s: STACK[X]) = (not empty (s))
pre top (s: STACK[X]) = (not empty (s))
AXIOMS

For all x: X, s: STACK[X]:

empty (new ())

not empty (push (x, s))

top (push (x, s)) = x

pop (push (x, s)) = s
Data Models / Abstract Implementations

•
An abstract implementation is a data model specifying some abstract organization of data (an ADT’s state), e.g., a list for stacks, a binary tree for expressions, a binary search tree for dictionaries, etc.

•
A data structure is the way we represent an abstract implementation. For example, a list can be represented by an array of data items or by a linked list of data items.

•
An algorithm is used to describe a method for implementing a behavior. Algorithms can be at various levels of abstraction, depending upon our needs.

Choice of Data Structures & Algorithms

•
A Data Structure is a concrete implementation of some Data Model. For instance, a tree is often implemented as a linked list, but can also be implemented by an array or a heap.

•
The choice of a data structure and the corresponding algorithms depends on many things. Some of these are:

SPACE EFFICIENCY

TIME EFFICIENCY

PERSONAL OR TEAM PREFERENCE

EASE IN A GIVEN LANGUAGE

REUSE (IT’S ALREADY BEEN DONE IN SOME ACCEPTABLE WAY)

•
Algorithms must be analyzed for correctness and complexity.

•
The complexity of a correct algorithm is no better than the inherent complexity of the problem being modeled. Often, the problem’s inherent complexity – an intrinsic property – is less than that of our associated algorithm.

Graph Data Models and Data Structures

[image: image14.wmf]A

B

F

E

G

C

D

6

7

5

7

7

3

7

11

6

14

5

3

Adjacency Matrix Representation

Adjacency Lists Representation

A
B
C
D
E
F
G

A
0
(
5
3
(
(
14

A
((C,5),(D,3),(E,14))

B
(
0
(
(
5
7
6

B
((E,5),(F,7),(G,6))

C
5
(
0
11
3
7
(

C
((A,5),(D,11),(E,3),(F,7))

D
3
(
11
0
7
(
6

D
((A,3),(C,11),(E,7),(G,6))

E
(
5
3
7
0
(
7

E
((B,5),(C,3),(D,7),(G,7))

F
(
7
7
(
(
0
(

F
((B,7),(C,7))

G
14
6
(
6
7
(
0

G
((A,14),(B,6),(D,6),(E,7))

WEEK # 4
1. List data model.

Implementing lists by linked list data structures: singly linked versus doubly linked; circular, cursor.

Implementing lists by array data structures; use of sentinel to reduce constant factor on linear search; binary search of sorted list

head (element), tail (list), sublist, empty list, prefix, suffix; element position, first, last, follows, precedes

operations: insert, delete, lookup, sort, merge (two lists to one), spilt (one to two), concatenate, first, last, head, tail, retrieve ith, length, isEmpty, isNotEmpty

2. Sublist versus subsequence

Multilist

3. Common Abstract Data Types that can be associated with List data model

Stack – clear, isEmpty, isFull, push, pop

Queue – clear, isEmpty, isFull, enqueue, dequeue

Deque – clear, isEmpty, isFull, addFront, removeFront, addRear, removeRear

4. Array and linked list implementations

Collections of heterogeneous elements in a single stack or queue

Polymorphism in action

No need to alter clients’ code whether implemented as arrays or linked lists

Encapsulation in action

5. Longest Common Subsequence Problem – dynamic programming

Compare naive approach (exponential) versus dynamic programming (quadratic)

6. Programming Assignment #2: Turn in on Thursday, September 30..Write a program in Java or C++ to solve the longest increasing subsequence problem. This is actually posed in the text as problem 10.53. Your program reads a sequence of n integers, and produces all longest increasing subsequences. Be sure to do this using an O(n2) algorithm (dynamic programming).

7. Discussion of problem 2.17 b -- find the minimal positive sublist (consecutive subsequence) sum

n lg n based on sort of cumulative sums (a[0] ... a[k]), k<n

8. Discussion of programming assignment#2

applicability of Principle of Optimality to longest increasing subsequence problem

9. Tree Data model. Basic tree terminology. Tree traversal algorithms – breadth versus depth first; inorder, preorder and postorder. Binary trees. Binary tree traversal algorithms.

ADTs -- Collection Abstraction in Java
class AbstractCollection extends Object {

public boolean isEmpty() { return size() == 0; }

public abstract int size();

public abstract boolean add(Object o);

public boolean remove(Object o);

Iterator e = iterator();

if (o==null) while (e.hasNext()) if (e.next()==null) { e.remove(); return true; }

else while (e.hasNext()) if (o.equals(e.next())) { e.remove(); return true; }

return false;

}

public boolean removeAll(Collection c) {

boolean modified = false;

Iterator e = iterator();

while (e.hasNext()) if(c.contains(e.next())) {e.remove(); modified = true;}

return modified;

}

public boolean contains(Object o) {

Iterator e = iterator();

if (o==null) while (e.hasNext()) if (e.next()==null) return true;

else while (e.hasNext()) if (o.equals(e.next())) return true;

return false;

}

public abstract Iterator iterator();

}

This is actually more abstract than an ADT since we cannot even define the semantics for the operation add, because we don't know if duplicates are allowed.

This could be the root of a subtree of collection-like classes in a well-constructed class hierarchy.

Linked List of Object Values in Java -- NOT Java's; NOT texts
// A ListNode class might be declared by

class ListNode {

private Object element ;

private ListNode next;

public ListNode(Object value) { element = value; next = null;}

public ListNode(Object value, ListNode node) { element = value; next = node;}

public Object getElement() { return element; }

public void setData(Object value) { element = value;}

public ListNode getNext() { return next; }

public void setNext(ListNode node) {next = node;}

}

We can declare and initialize the list head – this is different from text

ListNode listHead = null; // actually all object handles start with null

Dynamic Creation of Objects

To create a new node

ListNode node = new ListNode(anObject); //

To add a new node to front of list

node.setNext(listHead);

listHead = node;

To remove first element in list

if (listHead != null)

listHead = listHead.getNext();

Traversing Linked List in Java
// Traversal -- print list in Java

public void printList(ListNode current) {

if (current != null) {

System.out.println(current.getElement().toString()); // all objects understand "toString()"

printList(current.getNext());

}

}

// to start this, we just call with head of list

printList(listHead);

Traversal -- search list in Java

public void searchList(ListNode current, Object target) {

if (current == null)

System.out.println("The value " + target.toString() + " is not in the list.");

else if (current.getElement().equals(target)) // == means is same object -- we are less picky

 System.out.println("The value " + target.toString() + " is in the list.");

else

searchList(current.getNext(), target);

}

// to start this, we just call with head of list and target, e.g.,

searchList(listHead, anObject);

Removing Item from Linked List in Java
Traversal -- remove in Java -- Challenge!!!

public boolean removeFromList (ListNode current, Object target) {

if (current == null) then

return false;

else if (current.getElement().equals(target)) {

// oh no, what to do here????? -- we need the previous ListNode

return true; }

else

return removeFromList(current.getNext(), target);

}

// to start this, we just call with head of list and target, e.g.,

if (removeFromList(listHead, anObject)) print(“Got it!!”);

Traversal -- remove in Java -- Challenge!!!

public boolean removeFromList (ListNode current, ListNode old, Object target) {

if (current == null)

return false;

else if (current.getElement().equals(target)) {

if (old == null) listHead = current.getNext();

else old.setNext(current.getNext());

return true; }

else

return removeFromList(current.getNext(), current, target);

}

// to start this, we just call with head of list, null and target, e.g.,

if (removeFromList(listHead, null, anObject)) print(“Got it!!”);

ADTs -- Stack, Queue, PriorityQueue Protocols in Java Form
Stack ADT

public Stack()

public boolean isEmpty()

public int size()

public boolean add(Object data)

public boolean remove()

public Object peek()

public Iterator iterator()

Queue ADT

public Queue()

public boolean isEmpty()

public int size()

public void add(Object data)

public Object remove()

public Object peek()

public Iterator iterator()

Priority Queue (max) ADT

public PriorityQueue()

public boolean isEmpty()

public int size()

public void add(Comparable data) // Comparables are objects that have a natural (total) order

public Comparable deleteMax()

public Comparable peekMax()

public Iterator iterator()

ADTs -- Bag Protocol in Java Form
Bag ADT

public boolean isEmpty()

public int size()

public boolean add(Object data)

public boolean remove(Object data)

public boolean removeAllInstances(Object data)

public int countInstancesOf(Object data)

public boolean contains(Object data)

public Iterator iterator()

Set and List Model Protocols in Java
class AbstractSet extends AbstractCollection implements Set

public boolean isEmpty()

public int size()

public boolean add(Object data)

public boolean remove(Object data)

public boolean contains(Object data)

public Iterator iterator()

class AbstractList extends AbstractCollection implements List

public boolean isEmpty()

public int size()

public boolean add(Object data)

public void add(int index, Object element)

public boolean remove(Object data)

public boolean remove(int index)

public boolean contains(Object data)

public Object get(int index)

public int indexOf(Object data)

public Iterator iterator()

Simple Linked List Implementation of Queue

· Linked new to old, point to newest

Insert is O(1);
Remove is O(N)

· Linked old to new, point to oldest

Insert is O(N);
Remove is O(1)

· Linked new to old, newest and oldest pointers

Insert is O(1);
Remove is still O(N) !

· Linked old to new, newest and oldest pointers

Insert is O(1);
Remove is O(1)

· The fourth case is interesting since it’s optimal. The basic idea is that with old to new, we are matching the operations since we increase on the new, so previous new points to newest. In the case of remove, we need to set the end to the one that the current oldest points at. That’s easy. The only potential land mines are the extreme conditions – empty and overflow.

Circular Linked List Implementation of Queue

· Circularly Linked new to old, point to newest

Insert is O(1) !;
Remove is O(N) !

· Circularly Linked new to old, point to oldest

Insert is O(1);
Remove is O(N) !

· Circularly Linked old to new, point to newest

Insert is O(1);
Remove is O(1)

· Circularly Linked old to new, point to oldest

Insert is O(1);
Remove is O(1)

The Actual Linked List Entry in Java is Doubly Linked

private static class Entry { // embedded in LinkedList class

Object element;

Entry next;

Entry previous;

Entry(Object element, Entry next, Entry previous) {

this.element = element;

this.next = next;

this.previous = previous;

}

}

Here's Use of This in Java's Linked List Class

public boolean remove(Object o) {

if (o==null) {

for (Entry e = header.next; e != header; e = e.next) {

if (e.element==null) { remove(e); return true; }

}

} else {

for (Entry e = header.next; e != header; e = e.next) {

if (o.equals(e.element)) { remove(e); return true; }

}

}

return false;

}

Circular Array (Cursor) Representation of Deque

public class Deque {

final private int MaxDeque = 10;
private int left=0, right=0, size=0, capacity;

private Object contents[];

public Deque() { this(MaxDeque); }

public Deque(int max) { capacity = max; contents = new Object[max]; }

public boolean isEmpty() { return size == 0; }

public boolean isFull() { return size>=capacity; }

public boolean addLeft(Object item) {

if (!isFull()) {

contents[left] = item;

left = (left-1) % capacity; size++;

return true;

}

else return false;

}

public boolean addRight(Object item) {

if (!isFull()) {

right = (right+1) % capacity; size++;

contents[right] = item;

return true;

}

else return false;

}

Implementation of Deque Remove Operations

public Object removeRight() {

if (!isEmpty()) {

Object result = contents[right];

right = (right-1) % capacity; size--;

return result;

}

else return null;

}

public Object removeLeft() {

if (!isEmpty()) {

left = (left+1) % capacity; size--;

return contents[left];

}

else return null;

}

} // End of Deque

Testing Overflow and Underflow

In Deque class we kept track of size, using it to detect overflow and underflow.

Consider how we might detect these situations using only the values of left and right.

Clearly, when we start, the Deque is empty. So can we use left==right as condition for underflow?

But, if we were to do addRight’s up to the structure's capacity, then we would also get left == right!!!

Without knowing the size, we cannot differentiate overflow from underflow.

Text's Implementations of Lists

The text uses a list head that is not a member of the list, but looks just like any ListNode.

This is convenient for many operations, and I encourage you to do likewise.

The text also implements an iterator for all its list types.

This is a requirement for any reasonable library.

Expecting algorithms like sorts and searches to iterate means

you provide an iterator; or

each of these algorithms knows the details of the data structure

The second option is BAD, VERY BAD.

Thus, I strongly recommend that you provide iterators for all collection types.

Moreover, provide basic conversion to string for all new types.

In Java, this is commonly done by overriding

public String toString()

which, by default, just specifies the class name of the object's class.

In C++ you overload the insertion operator << to insert a printable version into streams.

Tree Data Model – The Basic Parts

Graph Concepts

Node (point)

denoted by a point

Labeled Node

a value (or name) for each node

Edge (branch)

denoted by a line between 2 nodes

Directed Edge (arc)

an oriented line (from one node to another)

orientation can be explicit or implicit

In and Out Degrees

Path; Path Length; Cycle (cyclic, acyclic)

Connected (path from any node to any other)

Tree Definitions

Tree Definition # 1 (unoriented)

Root (a designated node) with no parent

Every node, except the root, has an edge to its unique parent

Connected in that all nodes have a unique path through parents to the root

Tree Definition # 2 (oriented from root to leaves)

Root – only node with in-degree of 0

Others have in-degree of 1 from their parents

Connected in that all have path from root

Tree Definition # 3

Any single node r denotes a tree with r as its root

If r is a new node and T1, …,Tn are trees with roots r1, …,rn, then T is a tree where T has root r and r has an edge to each of r1, …,rn. Assumes that r and all nodes of T1,…,Tn are distinct.

Tree Notation

Root

Parent

Child

Ancestor (proper)

Descendant (proper)

Sibling

Leaf (no children, out-degree of 0)

Frontier (catenation of labels of leaves from left to right)

Interior (at least one child, out-degree > 0)

Subtree (a node, its proper descendants with arcs)

Path – Unique heritage between node and root

Depth or level – Path length between node and root

Height – longest path length between node and a leaf

Height of tree is height of root

Some trees are Oriented

(parent-child or child-parent)

Some trees are Ordered

If Ordered then have 1st, 2nd, etc. Child

lower numbered siblings are to left of higher

If Binary then Left and Right Child

Also left and right subtrees (which are themselves binary)

On ordered, if a and y are siblings and x is to left of y, then all of x’s descendants are to left of all of y’s descendants

Binary Tree Recursive Definition

A binary tree is

either empty // Note this is an extension to tree notion

or consists of a node (root) with

data (of some appropriate type)

a left child (which is also a binary tree)

a right child (which is also a binary tree)

Above lends itself to recursive divide and conquer algorithms and inductive proofs of correctness and complexity.

Algorithm form

if (isEmpty()) { easy case }

else { process node, left child and right child in appropriate order }

Proof form (S(j) is property for binary trees with depth j)

Basis: Show S(0). This is the statement of property for empty tree

Inductive hypothesis: Assume S(k) true, 0 (k < N

Inductive step: Prove S(N). Induction depends on fact that children of root are binary trees with depth less than N.

Data Structure for Trees – the Obvious

class Tree {

private Object data;

private Tree[] children;

final static private int MaxChildren = 10; // or whatever

public Tree (Object data) {

this.data = data;

this.children = new Tree[MaxChildren];

}

}
Given a node, we can access the i-th child in O(1) time.

Space utilization is quite poor as lots of children are possible, but rare.

Can use Vector to improve this.

This is usually a good structure for binary trees (ones for which every node has at most 2 children. In this case, we use fields left and right, rather than an array.

Expression trees are commonly represented this way since unary operators are rare and binary are common.

CHALLENGE: For an expression with n binary operators and no unary operators, how many child pointers are NIL; how many are non-NIL?

Data Structure for Trees – Less Obvious

An alternative data structure is

Leftmost-child – Right Sibling Pointers

class Tree {

private Object data;

private Tree leftChild;

private Tree rightSibling;

}
This is just a reorientation of the tree.

Data Structure for Trees – Unobvious

Another alternative data structure is

Parent Pointers

class Tree {

private Object data;

private Tree parent;

}
This changes the direction of reference so that a child points to its parent, but parents have no handle on their children. This is very space efficient since the only NIL pointer is in the root, and there is only one pointer per node. This data structure does not support many of the useful ways we traverse trees, but it is superb for certain applications, e.g., trees representing equivalence classes.

A fourth data structure is parent, firstChild and nextSibling parts.

This hedges nearly all bets.

Binary Tree

class BinaryTree {

Object data;

BinaryTree left = null;

BinaryTree right = null;

BinaryTree parent = null; // might not have this

BinaryTree (Object data, BinaryTree parent) {

 this.data = data;

 this.parent = parent;

}

BinaryTree (Object data) {

 this.data = data;

 this.parent = null;

}

}

WEEK # 5
1. Hurricane Floyd

2. More discussion of Longest Increasing Subsequence.

3. Expression trees. Evaluation. Code generation. Comments on optimizations that are based on tree transformations.

4. Discuss Tree data model use for abstract implementations of dictionaries. Show BST and Trie and review briefly.

Longest Increasing Subsequence Assignment

Given arbitrary sequences S and S', defined by

S = {a1, a2, …, an},
S' = {ai1, a i2, …, aim}.

We say S' is a subsequence of S, if each aij is in S, and ij < ik, whenever j<k.

basically, subsequences are formed by removing some of the object in the original sequence.

If the objects in a sequence are comparable, we can define the sequence as increasing if each contiguous pair of elements x, y is such that x<y.

The Longest Increasing Subsequence problem is the problem to determine, for an arbitrary sequence S of comparable objects, all those subsequence of S that are increasing and are of maximal length among the increasing subsequences. So, if S = {5, 1, 3, -2, 2, 6, 4, -1} then its LIS's are
{-2, 2, 4}, {1, 2, 4}, {1, 3, 4}, {-2, 2, 6}, {1, 2, 6}, {1, 3, 6}

Your objective is to design and implement a dynamic programming algorithm to determine all instances of the Longest Increasing Subsequence in some arbitrary sequence of integers. You are not to use the recursive solution that I have provided on a subsequent overhead. That algorithm runs in exponential time, blindly doing a depth first search for the length of the LIS and then returning just one instance of the LIS.

Longest Increasing Subsequence Length Algorithm

The algorithm you should use to determine the length of the LIS of some sequence S is the one I discussed in class on Thursday, September 17. This algorithm actually produces a vector, LISLengthEndingAt, of length N, where N is the size of the sequence. The value in LISLengthEndingAt[i] is the length of the LIS that includes S[i] as its last item. For example,

if S = {5, 1, 3, -2, 2, 6, 4, -1},then LISLengthEndingAt = {1, 1, 2, 1, 2, 3, 3, 2}

The length of the LIS is 3, the largest number in this vector, and there are six LIS's

{-2, 2, 4}, {1, 2, 4}, {1, 3, 4}, {-2, 2, 6}, {1, 2, 6}, {1, 3, 6}

Here is an algorithm (not quite legitimate C++ or Java) to fill in LISLengthEndingAt.

void fillInLISLengthEndingAt(vector<int> s, vector<int> &lisLengthEndingAt) {

for (int i = 0; i<s.length; i++) {

lisLengthEndingAt[i] = 1;

for (int j=i-1; j>=0; j--)

if (s[i]>s[j]) lisLengthEndingAt[i] = max(lisLengthEndingAt[i],lisLengthEndingAt[j]+1);

}

}

This is clearly an O(N2) algorithm, but it just computes the lengths. You must now compute and print all the LIS's. In a separate assignment I will ask you to analyze your algorithm for doing this print phase.

Longest Increasing Subsequence Assignment Test Procedure

To make it easy for you (and me) to test your solution, your program must request and input the value of N, the sequence length. This can be done through

prompted console input, or via a GUI. Your program must then generate and output a sequence of random integers (keep these between -15 and +16 like in

programming assignment#1), the length of the LIS of this sequence, and ALL LIS's. Again, this can be through console output, or a GUI.

Note: I will accept this assignment up to September 30, without lateness penalty. However, you will need to be prepared to answer algorithmic questions

concerning LIS on the quiz given September 28.

Recursive Solution to Longest Increasing Subsequence

Vector doLongestIncreasing(Vector v, int next, Vector answer) {

Vector try1, try2;

if (next >= v.size()) return answer;

else if (((Integer)v.elementAt(next)).intValue() > ((Integer)answer.lastElement()).intValue()) {

Vector newAnswer = (Vector) answer.clone();

newAnswer.add(v.elementAt(next));

try1 = doLongestIncreasing(v, next+1, newAnswer);

try2 = doLongestIncreasing(v, next+1, answer);

if (try1.size()>=try2.size()) return try1;

else return try2;

}

else return doLongestIncreasing(v, next+1, answer);

}

// Acquire or create v, the vector containing sequence

Vector answer = new Vector();

answer.add(new Integer(Integer.MIN_VALUE));

Vector longest = doLongestIncreasing(v, 0, answer);

longest.remove(0);

Common Tree Traversal Template

public void traverse () {

action0;

Tree child = leftChild;

if (child == null) return;

child.traverse();

action1;

child = child.rightSibling;

if (child == null) return;

child.traverse();

action2;

child = child.rightSibling;

…

if (child == null) return;

child.traverse();

actionK;

}

} // traverse

Binary Expression Trees

Labels are operators or atomic operands

All operators are interior nodes. Common labels are +, –, *, / and unary –

All atomic operands are leaves

Inductive Definition

A single atomic operand is represented by a single node binary tree

If E and F are expressions represented by binary trees S and T, respectively, and op is a binary operator, then (E op F) is represented by the binary tree U consisting a new root labeled op with left child S and right child T.

If E is an expression represented by tree S and op is a prefix unary operator, then (op E) is represented by the binary tree T consisting a new root labeled op with empty left child and right child S.

Example Uses

Interpreters and expression trees

Compilers and expression trees

Optimizing compilers and expression trees

Preorder Tree Traversal (Print)

public void preorder () {

System.out.println(data + " ");

Tree child = leftChild;

while (child!=null) {

child.preorder();

child = child.rightSibling;

}

}

Assume that we use this on an expression tree with the labels being operators or simple one-letter variable names. The expression (~A - B) * (C / (D + E)) is represented as

[image: image15.wmf]+

–

~

B

/

A

E

C

*

D

The preorder would print * – ~ A B / C + D E

Preorder BinaryTree Traversal (Print)

public void preorder () {

System.out.println(data + " ");

if (left!=null) left.preorder();

if (right!=null) right.preorder();

}

Again, assume that we use this on an expression tree with the labels being operators or simple one-letter variable names. The expression (~A - B) * (C / (D + E)) is represented as

[image: image16.wmf]+

–

~

B

/

A

E

C

*

D

The preorder would print * – ~ A B / C + D E

Postorder BinaryTree Traversal (Print)

public void postorder () {

if (left!=null) left.preorder();

if (right!=null) right.preorder();

System.out.println(data + " ");

}

The expression (~A - B) * (C / (D + E))

[image: image17.wmf]+

–

~

B

/

A

E

C

*

D

has postorder A ~ B – C D E + / *

Each of preorder and postorder provides an unambiguous way to denote expressions without parentheses. This is more compact than infix notation and can lead to very efficient expression evaluations.

Postorder IntExpressionTree Traversal (Evaluation)

class IntExpressionTree {

int data;

char op; // op or blank if a value

BinaryTree left = null;

BinaryTree right = null;

…

public int eval () { // preorder peek helps; operation is performed postorder

if (op.equals(' ')) return data;

else {

switch(op) {

case '~' : return –right.eval(); break;

case '+' : return left.eval() + right.eval(); break;

case '-' : return left.eval() - right.eval(); break;

case '*' : return left.eval() * right.eval(); break;

case '/' : return left.eval() / right.eval(); break; } } } }

[image: image18.wmf]+

–

~

2

/

5

2

20

*

3

evaluates as –28.

Inductive Proof of Evaluation

"Structural induction" is the process of proving a property of trees S(T) by:

BASIS: Show the property S(T) holds for any tree T with just one node.

INDUCTION: Assume T is a tree with a root r and children c1,…, ck, k(1.
Let T1, …,Tk be the subtrees rooted at c1, …,ck, respectively. The inductive step is to assume S(T1), …,S(Tk) are all true and prove S(T).

This really can be viewed as complete induction, where we are assuming the property for all tree with n or fewer nodes, and proving it for a tree with n+1 nodes.

Computing the Height of a Tree

class Tree {

private Object data;

private Tree leftChild;

private Tree rightSibling;

public int computeHT() {

int height = 0;

Tree child = leftChild;

while (child != null) {

height = Math.max(height, child.computeHT()+1);

child = child.rightSibling;

}

return height;

} // computeHT

Inductive Proof of Correctness:

S(t): when the computeHT message is sent to a non-null tree, t, it returns the height of the tree.

BASIS: If t has just one node then t has no children. The while test in computeHT fails on the first try and hence the correct value of 0 is returned.

INDUCTIVE HYPOTHESIS: Assume for arbitrary non-null tree t with children t1, … tk, that S(ti) for all 1(i(k.

More on the Height of a Tree

INDUCTIVE STEP: Suppose t is a tree with children t1, … tk, k(1. Then t has at least 1 child and, by definition, the height of t is one more than the maximum of the heights of its children. By the inductive hypothesis, computeHT will correctly compute the heights of all of t's children. To see that the correct value is returned for t we need to show that the while loop sets height to one more than the maximum of the heights of t’s children. This requires an embedded inductive proof.

S'(i): After the while loop has completed i iterations, the value of height is 1 more than the largest of the heights of the first i children of t.

BASIS: S'(1). Height is 0 prior to the first execution of the loop. Thus the new value of height is max(0,child.computeHT()+1), where child is the first child. Clearly this is one more than the height of the first child.

INDUCTIVE HYPOTHESIS: Assume S'(n), n(1.

INDUCTIVE STEP: Show S(n+1). If the height of the n+1 -st child is less than or equal to any of the previous, then its height+1 will be less or equal to the value of height and the iteration will make no changes, as required. If, on the other hand, the n+1 -st child has a height greater than any of the preceding children than its height+1 will exceed the current value of height and the max statement will set height to this new value, as required.

RETURNING TO THE STRUCTURAL INDUCTION: Since the while condition and the statement that assigns each successive rightSibling to child ensures that all subtrees are inspected, we can call upon the inner induction to assure that the value of height will be correct for t when we exit the while. The remaining statement just returns the value of height as computed.

Inorder and Binary Expression Trees

public void inorder () {

System.out.println("(");

if (left!=null) left.preorder();

System.out.println(data);

if (right!=null) right.preorder();

System.out.println(")");

}

The expression (~A - B) * (C / (D + E))

[image: image19.wmf]+

–

~

B

/

A

E

C

*

D

is printed as

 (((~ (A)) – (B)) * (((C) / ((D) + (E)))))

The correct fully parenthesized version.

Code Generation from an Expression Tree (binary ops)

class ExpressionTree {

private String label; // use no label as a null tree (leaf has two null children)

int height;

private ExpressionTree left;

private ExpressionTree right;

public int computeHT() {

if (label == null) height = -1;

else height = 1 + Math.max(left.computeHT(), right.computeHT()));

return height;

} // computeHT

private void genCode(register : integer) {

if (codeGenerator.isOperator(label) {

left.genCode(register);

right.genCode(rightChild.height);

codeGenerator.genOp(label, rightChild.height, register);

} else codeGenerator.genLoad(label, register);

} // genCode

public void generateCode() {

computeHT(); // set heights

genCode(height); // start with register height

}

Code Generator Support Routines

public boolean isOperator(String s){

return (s.equal("+")) || (s.equal("-")) || (s.equal("*")) || (s.equal("/"));

}

public void genOp(String s, int r1, int r2) {

// generate assembly language opcodes

switch (s.charAt(0)) {

case '+' :
System.out.print("ADD ");

case '-' :
System.out.print("SUB ");

case '*' :
System.out.print("MUL ");

case '/' :
System.out.print("DIV ");

}

// follow opcode by operands

System.out.println ("R" + r1 + ", R" + r2);

} // genOp

public void genLoad(String s, int r) {

System.out.println ("LOAD " + c + " R" + r);

} // genLoad

An Example of Code Generator

[image: image20.wmf]+

–

–

B

/

A

#7

C

*

D

#0

1)
LOAD
#0, R3

2)
LOAD
A, R0

3)
SUB
R0, R3

4)
LOAD
B, R0

5)
SUB
R0, R3

6)
LOAD
C, R2

7)
LOAD
D, R1

8)
LOAD
#7, R0

9)
ADD
R0, R1

10)
DIV
R1, R2

11)
MULT
R2, R3

Register Usage Optimization

The method computeHT is very closely related to an algorithm used to make efficient use of registers when generating code.

Consider if we have a commutative operator like +. We can compute

exp1 + exp2

as originally specified, or as

exp2 + exp1

The choice can effect the registers needed to complete the computation. If we exceed the number of actual registers, then we have register spill. This is a situation in which we must copy register contents to memory, and then restore these values later.

CHALLENGE: When is to your benefit to take advantage of commutativity? In other words what criteria should be used to reduce register consumption.

Dictionary ADT

Dictionary: An ADT that maintains a collection of comparable (totally ordered) elements and provides three services:
void insert(Element x) – inserts element x into Dictionary.
void delete(Element x) – deletes element x from Dictionary.
boolean lookup(Element x) – returns true or false depending on whether or not element x is in the Dictionary.
There are several abstract implementations that are useful for trees. Two of these are the Binary Search Tree (BST) and Trie, both based on the tree data model.

BST – A binary tree whose nodes contain words, such that

The word at each node of the tree is lexically greater than the words at all nodes in its left subtree and lexically less than the words at all nodes in its right subtree.

Trie – A tree representing a set of words, such that

The root of the tree has a null label.

Other nodes are labeled with a letter and a Boolean flag.

The set of words represented are those formed by concatenating the labels of all nodes in some path starting at a child of the root and continuing from child to child, stopping at some node whose flag is “true”.

Dictionaries as BSTs

Consider how we would represent the collection of words in the sentence

"this is the time for tiny things"

BST (here are 2)

[image: image21.wmf]this

tiny

time

things

is

the

for

this

tiny

time

things

is

the

for

Dictionaries as Tries

Consider again how we would represent the collection of words in the sentence

"this is the time for tiny things"

Trie (example is a bit of a cheat – in general we need end of word markers.)

[image: image22.wmf]f

i

t

o

r

s

h

i

e

i

s

n

g

s

m

e

n

y

 WEEK # 6

1. AVL Trees

2. Hashing – Hashing function, perfect hash (example from old Basic), collisions.

Collision detection and handling:

Alphabetic chaining – a simple bucket technique

Selection of hash functions – case study of symbol table

Chaining (Buckets and linked lists) – O(N/B), linear if B is O(N); rehashing on overflow

Open addressing Linear collision handling – can also be quadratic; circular list; secondary collisions;

why lookup works; use of increment other than 1 (relatively prime increment); naive analysis of linear collision

double, random, virtual; extendible

Virtual hash functions – avoiding wasted comparisons of keys

3. Priority queue ADT, priority ordered tree (POT) abstract implementation, balanced POT abstract implementation, and heap data structure. Min and max heaps.

4. Heapify and Heap Sort based on Heapify and DeleteMin; Heap Sort in Java

Analyze heap algorithms for insert, delete, heapify and heap sort

5. Variants of heaps

6. Review for Quiz#1

AVL Trees – Almost Balanced

A node has the AVL balance property if the heights of its left and right subtrees differ by at most one.

A binary tree is an AVL tree if its root has the AVL balance property.

If we start with an AVL tree and insert a new node, we have a problem if some node loses the AVL balance property. We consider the deepest node A at which this happens. The are four cases:

1. An insertion into the left subtree of the left child B of A

2. An insertion into the right subtree of the right child B of A

3. An insertion into the left subtree of the right child B of A

4. An insertion into the right subtree of the left child B of A

The first two cases are exterior subtrees, the second two are interior. The exterior cases are easier, requiring a single rotation. The interior cases require a double rotation. Algebraically, the operations are:

1. Single right rotation ((X B Y) A Z) ((X B (Y A Z))

2. Single left rotation (X A (Y B Z)) (((X A Y) B Z)

3. Left right double rotation ((W B (X C Y)) A Z) ((((W B X) C Y) A Z) (((W B X) C (Y A Z))

4. Right left double rotation (W A ((X C Y) B Z)) ((W A (X C (Y B Z))) (((W A X) C (Y B Z))

Deletion can be done as a "lazy" operation. That is, mark it and reuse the space later, if needed.

The worst case for searching AVL trees is a 44% increase in comparisons over perfectly balanced trees. The cost of maintaining perfect balance more than outweighs its benefit. However, AVL trees are just one kind of almost balanced trees. We will look at others later.

AVL Trees – Pictorial Tour (just cases 1 and 3; 2 and 4 are mirrors)

[image: image23.wmf] A

 B

Requires Single Right Rotation

X

Z

Y

 EMBED MSDraw.Drawing.8.2 [image: image24.wmf] A

 B

After

 Single Right Rotation

X

Z

Y

[image: image25.wmf] A

 B

Requires

Left Right Double Rotation

Z

Y

W

X

 C

 EMBED MSDraw.Drawing.8.2 [image: image26.wmf] C

 B

After

Left

 Right

Double

Rotation

Z

Y

W

X

 A

Hash Tables

Hashing – Hashing function,

Selection of hash functions – case study of symbol table

perfect hash (example from old Basic)

collisions

Collision detection and handling:

Alphabetic chaining – a simple bucket technique

Chaining (Buckets and linked lists) – O(N/B), linear if B is O(N); rehashing on overflow

Open addressing

Linear collision handling (circular list)

why lookup works

use of increment other than 1 (relatively prime increment)

naive analysis of linear

Secondary collisions

use of quadratic

Other Hashing Topics

Double

Random

Extendible

Virtual hash functions – avoiding wasted comparisons of keys

Integer Priority Queue in Java

// Heap Implementation of Priority Queue

public class IntPriorityQueue {

final static private int DefaultCapacity = 32;

private int[] heap;

private int capacity;

private int size = 0;

// Constructors

public IntPriorityQueue() { this(DefaultCapacity); }

public IntPriorityQueue(int capacity) { this.capacity = capacity; heap = new int[capacity]; }

// Priority Queue Basic Services

public void removeAll() { size = 0; }

public boolean isEmpty() { return size == 0; }

public boolean isFull() { return size ==capacity; }

public void insert(int value) {

if (!isFull()) { heap[size] = value; bubbleUp(size++); }

}

public int deleteMax() {

if (!isEmpty()) { int result = heap[0]; swap(0,--size); bubbleDown(0); return result; }

else return Integer.MIN_VALUE;

}

Priority Queue -- Heap Sort

// BubbleUp/Down Algorithms

private void swap(int i, int j) {

int temp = heap[i]; heap[i] = heap[j]; heap[j] = temp;

}

private void bubbleUp(int i) {

int parent = (int)((i-1) / 2);

if (i>0) if (heap[i]>heap[parent]) { swap(i, parent); bubbleUp(parent);}

}

private void bubbleDown(int i) {

int child = 2*i+1;

if (child < size-1) if (heap[child+1] > heap[child]) child++;

if (child < size) if (heap[i] < heap[child]) { swap(i, child); bubbleDown(child); }

}

// Heap Sort

private void heapify(int[] a, int n) {

heap = new int[a.length];

for (int i = 0; i<n; i++) heap[i] = a[i];

size = n;

for (int i = (int)((n-1)/2); i>=0; i--) bubbleDown(i);

}

public void heapSort(int[] a, int n) {

removeAll();

heapify(a, n);

int i = n-1;

while (! isEmpty()) a[i--] = deleteMax();

}

} // end IntProrityQueue

Heap Sort Analysis

Naive:

Each BubbleDown could require log2N moves, so Heapify takes N log2N

Intelligent:

The lower 1/2 of all nodes are never bubbled down.

The second 1/4 of all nodes can only bubble down 1 place.

The second 1/8 can only go down 2 places.

Only one element can bubble down log2N - 1 places.

Analysis:

Can show time is

N (1/4 + 2/8 + 3/16 + 4/32 + 5/64 + … + k/2k+1 + …)

= N/2 (1/2 + 2/4 + 3/8 + 4/16 + 5/32 + … + k/2k + …)

One way to find closed form is

1/2 + 2/4 + 3/8 + 4/16 + 5/32 + … + k/2k + …

= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + … + 1/2k + …

+ 1/4 + 1/8 + 1/16 + 1/32 + … + 1/2k + …

+ + 1/8 + 1/16 + 1/32 + … + 1/2k + …

+ …

= 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + … + 1/2k + …

= 2

so N/2 (1/2 + 2/4 + 3/8 + 4/16 + 5/32 + … + k/2k + …) = N/2 (2)= N

Another way is

S = 1/2 + 2/4 + 3/8 + 4/16 + 5/32 + … + k/2k + …

S/2 = 1/4 + 2/8 + 3/16 + 4/32 + 5/64 + … + k/2k+1 + …

S - S/2 = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + … + 1/2k + … = 1

So S/2 = 1, S = 2, and the sum is once again N/2 (2) = N

Quiz#1
Topics and Promises
COP3530, Fall 1999

Topics:

1. Abstract data type (ADT) consists of an encapsulated state and a set of behaviors.
An abstract implementation is a data model specifying some abstract organization of data (an ADT’s state), e.g., a list, a binary tree, a binary search tree, set, etc.
A data structure is the way we represent an abstract implementation. For example a list can be represented by an array of data items or by a linked list of data items.
In Java or C++, a behavior is invoked by a message. Methods are used to provide the behaviors associated with messages.

2. OOP concepts. Classes, encapsulation, hierarchies, polymorphism, static and dynamic binding.

3. Templates – class and method templates

4. Order analysis – Big-O, Omega, Theta, little-o; solving recurrence equations
5. Parallel Sorting – array architecture, even/odd exchange algorithm, analysis (cost vs work; cost/work efficiency).

6. Algorithm classifications (greedy, divide and conquer, dynamic programming)

use of amortization

7. List data model. Sublists versus subsequences. operations: insert, delete, lookup, sort, merge (two lists to one), split (one to two), concatenate, first, last, head, tail, retrieve ith, length, isEmpty, isNotEmpty

8. Abstract Data Types based on List data model
Stack – clear, isEmpty, isFull, push, pop
Queue– clear, isEmpty, isFull, enqueue, dequeue
Deque – clear, isEmpty, isFull, addLeft, addRight, removeLeft, removeRight

array and linked list implementations

9. Maximum sublist (consecutive subsequence) problem (greedy solution) and its variants (some greedy, some not)
10. Tree data model – terminology, various data structures, traversals, binary trees.
Tree data model use for abstract implementations of dictionaries. Binary Search Tree, AVL Trees and Trie abstract implementations.
11. Hashing. hash function; chaining; open addressing (linear, quadratic, double, random, virtual; extendible)

12. Priority queue ADT. priority ordered tree (POT) abstract implementation, balanced POT abstract implementation, and heap data structure. heapify, heapSort, bubbleUp and bubbleDown – code and analysis.
Expression trees – height, evaluation, code generation

13. Longest Common Subsequence (LCS) and Longest Increasing Subsequence (LIS) Problems– dynamic programming
Compare naive approach (exponential) versus dynamic programming (quadratic)

Promises:

1. I give you an ADT with description of semantics of each serviuce. I also give you some suggested abstract representations (data models) and, where appropriate, data structures for these representations. You must then fill in a table specifying the order of the best algorithms (assuming the most appropriate data structures, if I omit this) for each service when the specified abstract representation is used.

2. A recurrence equation to solve using inductive reasoning and then a short inductive proof to verify your assertion. I may be kind and give you the solution, in which case you must only verify this using an inductive proof.

3. A question regarding the Even-Odd Transposition parallel sorting algorithm.

4. A question about algorithms concerning subsequnces, e.g., max sum of contiguous subsequence or LCS or LIS.

5. An algorithmic and/or data structure question about lists, stacks, queues or deques.

6. An algorithmic and/or data structure question about trees, tries, BSTs or AVL trees.

7. A question about hash tables

8. A question about heaps

9. I will not have you write any long code sequences

10. The assignments, diagnostic test and sample questions are good models to use when you prepare for this quiz.

COP 3530 – CS3 Fall 1999
Sample Quiz # 1
Name:
Key

6
1.
Consider an Abstract Data Type, EventQueue (EQ), defined by the following protocol

public EventQueue() – constructs the EQ with an empty state (no upcoming events)
public void put(int t, Event ev) – adds a new event, ev, scheduled to occur at time, t, to the EQ. Multiple events can occur at the same time.

public Event peek() – returns an event with the smallest time value of all events in the EQ. Null is returned if the queue is empty. This does not change the EQ.

public Event pop() – pops an event with the smallest time value of all events from the EQ. Null is returned if the queue is empty. This changes the EQ.

Fill in the order of complexities in terms of N, the number of events being stored, of each of the three services provided for the EQ ADT, given the following four approaches to implementation. In all cases, assume that you are concerned with average, not worst case performance.

i.)
The state of the EQ is represented as a Balanced Priority Ordered Tree (BPOT). Here we store the minimum time value, not the maximum at the root of each subtree. You should assume a Min Heap data structure is used.

ii.)
The state of the EQ is represented by a BST, the time serving as the sort key. Assume a right child / left child linked list data structure.

iii.)
The state of the EQ is represented by an Unsorted List (UL). Assume a simple array data structure that stores the N events unsorted in positions 0 to N-1.

iv.)
The state of the EQ is represented by a Sorted List (SL). Assume a simple array data structure that stores the N events in positions 0 to N-1, sorted low to high by time.

	
	BPOT
	BST
	UL
	SL

	put
	lg N
	lg N
	1
	N

	peek
	1
	lg N
	N
	1

	pop
	lg N
	lg N
	N
	N

3
2.
Describe the concept of encapsulation.

The data structures (state representation) and method implementations are hidden. Only the set of services (protocol) is exposed. Changes to data structures and/or method implementations can be made so long as these do not change the semantics of the services.

4
3.
Assuming that T(1) = 1 and k(0, use the following table to solve the recurrence equations in a.)-d.).
	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk log n)

a.)
T(n) = 2 T(n/3) + n
c < dk
O(n)

b.)
T(n) = 2 T(n–1) + 2n2
c > 1
O(2n)

c.)
T(n) = 2 T(n/2) + 2
c > dk
n lg 2 = O(n)

e.) T(n) = T(n–1) + n2
c = 1
O(n3)

4.
Consider an Abstract Data Type, Deque, defined by the following protocol:

public Deque() // constructs an empty deque

public boolean isEmpty() // returns true if the deque is empty

public boolean addLeft(Object item) // add an element on the left end

public boolean addRight(Object item) // add an element on the right end

public Object removeLeft() // removes an element from the left end

public Object removeRight() // removes an element from the right end

A reasonable data structure for this ADT is a pointer to the tail (right) element in a circularly linked lists of elements, with links pointing from left towards right (the rightmost pointing back circularly to the leftmost.)

[image: image27.wmf]…

right

deque

el

next

el

next

el

next

element

element

element

4
a.)
What is the worst case complexity of algorithms needed for each of the four main services (two adds and two removes), given a deque containing N items.?

	Service
	Worst case

	addLeft
	O(1)

	addRight
	O(1)

	removeLeft
	O(1)

	removeRight
	O(N)

2
b.)
What data structure changes would you recommend to produce fast versions of all of these services? Justify.

Change the singly linked list to a doubly linked list. This allows access to the 2nd from rightmost in O(10 time, so removeRight now takes O(1).

8
5.
Analyzing the complexity of algorithms often requires that you solve a recurrence equation. For instance, an algorithm involving recursion might yield a time T(n), for n>1, defined recursively by

T(n) = 2(T(n-1) + 2, with the boundary condition that T(1) = 2.

Show that T(n) is 2n+1 – 2. You must use induction to prove that this equality holds for all n > 0, i.e., inductively prove the statement S(k) : T(k) = 2k+1 – 2 for all k(1.

Basis: S(1)
T(1) = 2 by definition of T (this is the boundary condition)

But, 2k+1 – 2 = 21+1 - 2 = 4 - 2 = 2 . 

Inductive Hypothesis: Assume for some k>1 that S(i) is true whenever i<k.

That is assume T(i) = 2i+1 – 2, for i<k.

Inductive Step: Show S(k)

T(k)
= 2(T(k-1) + 2, by definition and fact that k>1.

= 2((2(k-1)+1 - 2) + 2, by induction hypothesis.

= 2(k-1)+1+1 - 4 + 2

= 2k+1 - 2 
2
6.
An expression is often represented in a binary tree.

When unary prefix operators are included, is the operand the left or right child of the operator node?

right

What kind of traversal (prefix, infix or postfix) is carried out in order to produce a fully parenthesized standard form version of the expression?

infix

5
7.
Apply the even-odd parallel algorithm presented in class for sorting the 6 elements in the following linear array of 6 processors. Show the results of each of the up to 6 passes that it takes to complete this ascending (low to high) sort.

[image: image28.wmf]3

4

2

9

7

1

Initial Contents

[image: image29.wmf]3

4

2

9

1

7

After Pass 1

[image: image30.wmf]3

2

4

1

9

7

After Pass 2

[image: image31.wmf]2

3

1

4

7

9

After Pass 3

[image: image32.wmf]2

1

3

4

7

9

After Pass 4

[image: image33.wmf]1

2

3

4

7

9

After Pass 5

8.
Consider the Longest Common Subsequence (LCS) problem for string a1 a2… an and b1 b2 … bm. In solving this, you first build a matrix L, such that L[i,j] is the length of the lcs of a1 a2… ai and b1 b2 … bj. L[n,m] is then the length of the desired lcs. Actual lcs’s can then be built by traversing the matrix L, starting at L[n,m].

a.)
L can be filled in by either a recursive, divide and conquer procedure or an iterative dynamic programming strategy.

2

What is the order of execution of the iterative method for strings of length n and m?
O(n (m)

6
b.)
Fill in the lcs length values of the following matrix, L, given strings orate and roarer. I have been kind enough to fill in the boundary values.

	e
	0
	1
	1
	2
	2
	3
	3

	t
	0
	1
	1
	2
	2
	2
	2

	a
	0
	1
	1
	2
	2
	2
	2

	r
	0
	1
	1
	1
	2
	2
	2

	o
	0
	0
	1
	1
	1
	1
	1

	
	0
	0
	0
	0
	0
	0
	0

	
	
	r
	o
	a
	r
	e
	r

5
c.)
Draw lines in L, above, that represent one path that may be used to construct an lcs. Draw your path so it doesn’t obscure your answer to part b.

What is the lcs associated with the path you traced? rae
What is a second, distinct lcs? ore, oae
4
9.
Hash Tables that use chaining store items with equal hash indices in the same Bucket. Each bucket is represented by a linked list, with the i-th table entry serving as the head of the linked list of all entries whose hash value is i. An alternative scheme (open addressing) stores all items in a List, represented by a one-dimensional array, with collisions being handled by some list probing, e.g., linear search.

Analyze the Chaining (Bucket) and the Open Addressing using Linear Probing techniques as regards expected time for insertion and lookup. Assume that there are N items in the table, B buckets (for the Bucket technique) and M slots in the array (for the List technique). Fill in values for the order of execution of the four specific cases below, assuming a hash function that distributes the N items evenly across the range of hash values.

	
	Insert / Lookup – They’re the same

	Bucket with B = 10
	N

	Bucket with B = N/2
	1

	List with M = 2*N
	1

	List with M = N
	N

10.
The following questions are all about max heaps. Below is a part of the IntPriorityQueue class we discussed.

public class IntPriorityQueue {

private int[] heap;

private int size = 0;

private void swap(int i, int j) {int temp = heap[i]; heap[i] = heap[j]; heap[j] = temp;}

a.)
Present the method bubbleDown that is used in heapify and priority queue deletion..

5
private void bubbleDown(int i) { // i is the index of element to bubble down

int child = 2 * i + 1;

if (child < size - 1) if (heap[child+1] > heap[child]) child++;

if (child < size) if (heap[i] < heap[child]) { swap(i, child); bubbleDown(child); }

}

6
b.)
If N=8 and heap has the following n elements prior to the heapify

10 14 19 2 30 1 20 22

Show this as a balanced binary tree (that is, show the tree that this heap represents.)

[image: image34.wmf]19

2

22

20

30

1

14

10

What does heap look like after heapify? Show it as a list and then as a BPOT

30 22 20 10 14 1 19 2

[image: image35.wmf]20

10

2

19

14

1

22

30

WEEKS # 7 & 8

1. Quiz#1 on Tuesday, September 28.

2. Review of Quiz

3. Lazy tree

the lis tree implicit in the lis length vector

4. Sorting

bounds on comparison sort

bounds on adjacent comparison sort

shell sort and its problems

example that N2 is attainable

merge and heap sorts attain lower bound

5. Exam#1 on Thursday, October 7

COP 3530 – CS3 Fall 1999
Quiz # 1
Name:
Key

12
1.
Consider an Abstract Data Type, IntCollection (IC), defined by the following protocol

public IC() – constructs the IC with an empty state
public void insert(int x) – adds a new integer x to the IC. Duplicates are allowed.

public boolean hasDuplicates() – returns true, if the IC contains at least one duplicate, false otherwise.

public int range() – returns an integer that indicates the range in the IC, i.e., the difference in values between the smallest and largest integers stored in the collection.

public boolean find(int x) – returns true, if the IC contains at the value x, false otherwise.

Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure.

Fill in the order of complexities in terms of N, the number of elements being stored, of each of the last four services provided for the IC ADT, given the following six approaches to implementation. In all cases, assume that you are concerned with expected, not worst case performance. You should not be surprised if one or more of these suggested approaches are poor choices. (Note: Duplicates are allowed.)

i.)
The state of the IC is represented in a Min Heap implementation of a Balanced Priority Ordered Tree (BPOT).

ii.)
The state of the IC is represented as a Binary Search Tree (BST). Assume a right child / left child linked list data structure with your only direct access being to the root.

iii.)
The state of the IC is represented by a Hash Table (HT). You may assume that collisions are handled by using unsorted buckets and that the hash function evenly distributes the N elements over B buckets. Your answer should be in terms of two possibly independent parameters, N and B.

iv.)
The state of the IC is represented by an Unsorted List (UL). Assume a simple array data structure, storing data in positions 0 to N-1.

v.)
The state of the IC is represented by a Sorted List (SL). Assume a simple array data structure, storing data, smallest to largest, in positions 0 to N-1.

vi.)
The state of the IC is represented by a Sorted Linked List (SLL). Assume a singly linked list data structure, sorted low to high. Further assume that we use forward links (lower to higher valued entries), and that the links are circular (tail points back to head) with a handle to recall the head (element with smallest value) of the list.

	
	BPOT
	BST
	HT
	UL
	SL
	SLL

	insert
	lg N
	lg N
	1
	1
	N
	N

	hasDuplicates
	N lg N
	N
	B+Nlg(N/B)
	N lg N
	N
	N

	range
	N
	lg N
	N+B
	N
	1
	N

	find
	N
	lg N
	N/B
	N
	lg N
	N

3
2.
Which of the following are AVL trees, assuming the labels are sort keys? Circle yes or no, as appropriate, above each tree. For any that are not AVL trees, circle the first node at which the AVL property is lost.

AVL (yes / no)
AVL (yes / no)

[image: image36.wmf]

4

2

5

7

3

6

1

8

[image: image37.wmf]4

2

5

7

23

6

11

18

3.
Assuming that T(1) = 1 and k(0, use the following table to solve the order of the recurrence equations in a.)-c.). You must specify values of b, c, d and k, as appropriate. Also your answers must be reduced and may not involve any variables except n.

	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk log n)

b
c
d
k
Order of T(n)

2
a.)
T(n) = 4 T(n/4) + 4n
4
4
4
1
n lg n
2
b.)
T(n) = 2 T(n–1) + 1
1
2
n/a
0
2n
2
c.)
T(n) = 8 T(n/2) + n2
1
8
2
2
nlog28 = n3
6
4.
Analyzing the complexity of algorithms often requires that you solve a recurrence equation. For instance, an algorithm involving recursion might yield a time T(2n-1), for n(1, defined recursively by

T(2n-1) = 2n T(2n-1-1), with the boundary condition that T(0) = 1. (Note: 2n-1 = 0, when n=0.)

Show that T(2n-1), for n(0 is 2n (n+1) / 2. You must use induction on n to prove that this equality holds.
That is, inductively prove the statement s(n): T(2n-1) = 2n (n+1) / 2,for n (0.

Basis (n=0): show s(0): T(20-1)= 20 (0+1) / 2

T(20-1) = T(0) = 1, by definition (boundary condition).

But, 20 (0+1) / 2 = 20 = 1, which verifies the base case.

IH: Assume for some n>0 that s(k)is true for all k<n. That is assume T(2k-1) = 2k (k+1) / 2 for all k<n.

IS: Show s(n), n>0. That is, show that T(2n-1) = 2n (n+1) / 2
But, T(2n-1)
= 2n T(2n-1-1) by definition, since n>0.

= 2n2n (n-1) / 2 by the inductive hypothesis

= 2n+n (n-1) / 2 by property of exponents

= 2(2n + n2 - n) / 2 by simple algebra

= 2(n2+n) / 2 by simple algebra

= 2n (n+1) / 2 which verifies the inductive step

5
5.
Apply the even-odd parallel transposition algorithm presented in class for sorting the 8 elements in the following linear array of 8 processors. Show the results of each of the up to 8 passes that it takes to complete this ascending (low to high) sort.

[image: image38.wmf]

2

14

6

9

3

7

11

4

Initial Contents

[image: image39.wmf]

2

14

6

9

3

7

4

11

After Pass 1

[image: image40.wmf]

2

6

14

3

9

4

7

11

After Pass 2

[image: image41.wmf]

2

6

3

14

4

9

7

11

After Pass 3

[image: image42.wmf]

2

3

6

4

14

7

9

11

After Pass 4

[image: image43.wmf]

2

3

4

6

7

14

9

11

After Pass 5

[image: image44.wmf]

2

3

4

6

7

9

14

11

After Pass 6

[image: image45.wmf]

2

3

4

6

7

9

11

14

After Pass 7

[image: image46.wmf]

After Pass 8
1

What is the order of execution (worse case time) of this algorithm for sorting n values?
O(n)

1

What is the cost of this algorithm for sorting n values?
O(n2)

6.
Consider the Longest Increasing Subsequence (LIS) problem for the sequence {a1, a2,…, an} of integers. In solving this, you first build a list L, such that L[i] is the length of the lis of a1 a2… ai which includes ai. The largest value in L[] is then the length of the desired lis. Actual lis’s can then be built by traversing the list L in reverse order.

a.)
L can be filled in by either a recursive divide and conquer procedure or an iterative dynamic programming strategy.

1

What is the order of execution of the iterative dynamic programming lis method for sequences of length n?
O(n2)
1

What is the order of execution of the recursive divide and conquer lis method for sequences of length n?
O(2n)
4
b.)
Fill in the lis length values, L, given sequence {1, 5, 2, 6, 14, 4, 7, 3}? I've started L, putting in the boundary value for an artificial lowest number -(and the actual lis for the subsequence ending at the first value a1.

	0
	1
	2
	2
	3
	4
	3
	4
	3

	-(
	1
	5
	2
	6
	14
	4
	7
	3

3
c.)
Draw lines in L, above, that represent one path that may be used to construct an lis. Draw your path so it doesn’t obscure your answer to part b.

What is the lis associated with the path you traced? {1, 2, 4, 7}
What is a second, distinct lis? {1, 2, 6, 7}, {1, 5, 6, 7}, {1, 2, 6, 14}, {1, 5, 6, 14}
6
7.
Assume you have a sequence {a0, a1, … , an-1} of integers. Further, assume that this sequence can start with some number of zeros, but that zeros can never appear except in a contiguous subsequence at the start. In other words, once you stop seeing zeros, there can be no more. Present an efficient, in terms of worst-case performance, algorithm that returns the number of zero (between 0 and n) in such a sequence.

int zeroCount = howManyZeros(a, 0, a.length – 1);
// call the service

public int howManyZeros (int a[], int lo, int hi) { // returns number of zeros between lo and hi
while (lo <= hi) { // iterative version is real clean

int mid = (int) (lo + hi)/2;

if (a[mid] == 0) lo = mid+1;

else hi = mid-1;

}

return lo;

}

1

What is the order (big Oh) in terms of n of this algorithm?
lg n

1

What kind of algorithm is this (greedy, d&c, dynamic programming.)?
d&c

4
8.
There are many ways to handle collisions that arise in inserting items into hash tables, but all of these require that insertion and lookup employ the same search strategy. To support this using linear "open addressing" probing we usually do "lazy" deletion. Explain the term "lazy" and why this strategy is used.

Lazy means that we just mark the slot as empty. We can reuse this on a subsequent insertion, after we are sure the item being inserted is not already in the table.

We need the search to treat this as a space over which it passes. The contents are unimportant, but it cannot be treated as empty, else we might stop here when the item is actually in a later slot, if this space were full when that item was originally inserted.

9.
Consider the following expression tree (left and right orientation reflect left/right child relationships).

[image: image47.wmf]

*

+

/

E

C

D

–

–

+ +

A

2

What is printed out by a post-order traversal of this tree?

C D E + / A ++ -- *

2

What is printed out by an in-order traversal of this tree?

C / D + E * ++ A --

1

Assume that the left subtree takes two register to compute, and the right takes one. Which should be computed first in order to use the fewest registers? Circle one
left
right

10.
The following questions are all about max heaps. Below is part of the IntPriorityQueue class we discussed.

public class IntPriorityQueue {

private int[] heap;

private int size = 0;

private void swap(int i, int j);

private void bubbleUp(int i);

private void bubbleDown(int i);

public void insert (int value);

3
a.)
Present the method bubbleUp(int i).

private void bubbleUp(int i). {

if (i>0) {

int parent = (int) (i - 1)/2;

if (heap[parent] < heap[i]) {

swap(parent, i);

 bubbleUp(parent);

}

}

}

5
b.)
If size=8 and heap has the following size=8 elements prior to the heapify

11 12 14 2 6 17 10 13

Show this as a balanced binary tree (that is, show the tree that this heap represents). Do not sort or heapify yet, just show the tree represented by the heap data structure as given here.

[image: image48.wmf]

14

2

13

10

6

17

12

11

What does heap look like after heapify? Show it as a list (heap) and as a BPOT

17 13 14 12 6 11 10 2

[image: image49.wmf]

14

12

2

10

6

11

13

17

WEEKS # 9

1. Discussion of Exam#1.

2. Quick sort

3. Set data model: set notation; empty set; lists versus sets; bags (multisets) versus lists; Power sets; size of power set

union, intersection and difference; complement as a special case of difference; basic algebraic laws of commutation, association, distribution and idempotence; empty set as identity for union, universe as identity for intersection.

Proof techniques for sets: Venn Diagrams; transformations; subset (containment) relations; equivalence by mutual inclusion.

4. Implementing sets as lists: unsorted lists and union, intersection, difference – O(mn);

sorted list and union, intersection, difference – O(m+n); factoring in the cost of sorting O(m log2m + n log2n).

5. Characteristic Vectors: Boolean arrays; Packed bit vectors.

Sets and efficient update algorithms for spreadsheets.

Pascal Set of enumeration type declaration; size limitations on basis set and why.

6. Relations and functions

Notations: list of tuples, binary relations, infix notation, graphs

Cartesian product: A B = {(a,b) | a A, b B }
Partial functions and relations; total functions and many-one relations; 1-1 into (injection), 1-1 onto (bijection)

Functions as data – finite set of pairs with a relation for which no simple functional pattern exists. Operator tables, parse tables, and lots of other associations fall into this category. Implement as linked list, vector (R[a] = b if a R b) or hash table.

Binary relation – a single domain element can be related to more than one range element. Implementation must account for this. Lookup usually returns all values that a key might map onto. An example of a binary relation might be one that maps spreadsheet cells to spreadsheet cells, where a R b, means a change to a’s value necessitates reevaluation of b. Can do with R[a] = S, where b S whenever a R b. Can also use a linked notation indexed by domain elements (a heads a list of all b, such that a R b), a linked list of pairs (a,b) whenever a R b or a hash linked list of pairs (a,b), indexed by the domain element a.

7. Properties of relations: Reflexive, symmetric, transitive, anti-symmetric

Partial and total orders; Topological sorts – closure of (partial ordering

Equivalence relations and their importance in CS – mention minimization; Partitions and Union/Find problem – child/parent trees, intelligent union, path compression.

COP 3530 – CS3 Fall 1999
Exam # 1
Name:
Key

10
1.
Consider an Abstract Data Type, IntBag, defined by the following protocol

public IntBag() – constructs the IntBag with an empty state. We will assume that each state item keeps track of a pair -- (value, repeat count).
public int insert(int x) – adds an integer x to the IntBag. Duplicates are allowed. Returns the number of times this integer appears in the IntBag. (This count includes the instance we just added.)

public int remove(int x) – removes an integer x from the IntBag. An attempt to remove an item not in the IntBag results in no changes. Returns the remaining number of times this integer appears in the IntBag.

public int howMany(int x) – Returns the number of times x appears in the IntBag.

public boolean thisMany(int count) – Returns true if at least one value in IntBag has a repeat count of count.

public int median() – returns the median item in the IntBag, based on a sorted low to high order of the values. Note: repeats must be considered here. The state variable M, below, may help.

Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure. We will always assume that these implementations keep track of the current number of distinct integers (N) and the total number of items (M) in the IntBag, but we will assume no additional state information, except that implied by the particular data model/structure.

Fill in the order of complexities in terms of N of each of the last five services provided for the IntBag ADT, given the following four approaches to implementation. In all cases, assume that you are concerned with expected, not worst case performance. You should not be surprised if one or more of these suggested approaches are poor choices. Note: items are stored as pairs (value, repeat count), where the value is used in the orderings of the BST and Hash Table, but the repeat count is used for ordering items in the Sorted List.

i.)
The state of the IntBag is represented as a Binary Search Tree (BST). Assume a right child / left child linked list data structure with your only direct access being to the root. value is the sort key.

ii.)
The state of the IntBag is represented by a Hash Table (HT). You may assume that collisions are handled by using sorted buckets and that the hash function evenly distributes the N elements over B buckets. value is the sort and hash key. Your answer should be in terms of two possibly independent parameters, N and B.

iii.)
The state of the IntBag is represented by an Unsorted List (UL). Assume a simple array data structure, storing data in positions 0 to N-1.

iv.) The state of the IntBag is represented by a Sorted List (SL). Assume a simple array data structure, storing data in positions 0 to N-1, sorted smallest to largest according to repeat count.

Note: Lazy deletion is not allowed for any of these structures.

	
	BST
	HT
	UL
	SL

	insert
	lg N
	N/B
	N
	N

	remove
	lg N
	N/B
	N
	N

	howMany
	lg N
	N/B
	N
	N

	thisMany
	N
	B + N
	N
	lg N

	median
	N
	B+N
B + N lg N
	N
N lg N
	N
N lg N

1

If we stored our data in a min heap data structure representing a BPOT, using value as the key, what would be the cost of the median service?

N lg N or N

1

Under this same min heap assumption, what is the cost of selecting the first k items?
lg N or k lg N

2.
The following is an AVL tree (it has the AVL balance and BST properties).

[image: image50.wmf]

4

2

5

7

3

6

1

9

3

Draw a new BST that demonstrates what this looks like when the value 8 is added. The resulting tree will not have the AVL balance property. Circle node in your tree that is the root of the deepest subtree at which property is lost.

[image: image51.wmf]

4

2

5

7

3

6

1

9

8

1

What rotation is required to rebalance the tree? Circle one of the following:

Single right rotation ((X B Y) A Z) ((X B (Y A Z))

Single left rotation (X A (Y B Z)) (((X A Y) B Z)

Left right double rotation ((W B (X C Y)) A Z) ((((W B X) C Y) A Z) (((W B X) C (Y A Z))

Right left double rotation (W A ((X C Y) B Z)) ((W A (X C (Y B Z))) (((W A X) C (Y B Z))

3

Now show the tree that results after this rotation is performed.

[image: image52.wmf]

4

2

5

8

3

6

1

9

7

3
3.
The work done by a parallel even-odd transposition sort of N elements using N processors is N2. State the theoretical result that shows this is the minimum possible work for such a sort? Be sure to state the properties of this sort that make this bound applicable.

The even-odd transposition sort is an adjacent comparison-based sort. We have shown that any such sort requires ((N2) operations on a single processor. Using multiple processors cannot decrease the amount of work (instructions executed), rather this strategy can spread such work out over many processors. In our case, we spread the sort's work over N processors. These processors had to do a total of N2 work, at a minimum. That's why they spent O(N) time.

3
4.
We proved the theoretical result that comparison-based sorting of N items is of complexity ((N lg N). How did the term N lg N arise? Hint: Consider how many permutations there are of N items.
In justifying the N lg N term, do not resort to the "Law of Minor Miracles."

N items can be permuted in N! = N(N-1)(N-2) … 1 ways. A sort starts with no knowledge of which of these N! permutations it is given to sort. A comparison-based sort can only cut the number of possibilities by a half with each pair-wise comparison. To complete its sort, it must reduce the possibilities to one. Thus, its decision tree has depth lg N!, the number of times N! must be successively divided by 2 to get to one.

lg N! = lg N + lg (N-1) + lg (N-2) + … + lg 2 + lg 1

 > lg N + lg (N) + … lg (N/2)

 > N/2 lg N/2 = ((N lg N)

This shows we can do no better than N lg N. In fact, we can achieve this bound with a MergeSort.

3
5.
A Bucket Sort, using M buckets, can sort a list of length N of integers in the range [lo … lo+M-1] in O(N+M) steps. If M = O(N), then this is just O(N) steps, which seems in contrast to the theoretical result stated above that sorting N items is of complexity ((N lg N). Briefly explain this apparent contradiction.

A Bucket Sort can only handle a limited range of values. In our case we have made this limit just O(N). This allows us to totally avoid comparisons. Since we are not doing a comparison-based sort the ((N lg N) bound is not applicable. Note, if we just allowed arbitrary 32-bit integers, we would need over 4 billion buckets to do this sort, no matter how small N might be.

3
6.
The problem of checking a list of N randomly permuted comparable items (e.g., integers) for a duplicate is known to have ((N lg N) complexity. Describe an algorithm that achieves this lower bound.

Sort the list of N elements
O(N lg N)

Scan the sorted list for an adjacent pair with same value
O(N)

if a duplicate appears, report "yes"
O(1)

else report "no"
O(1)

Total cost
O(N lg N)

or could do AVL insert, reporting a duplicate when it's recognized

3

Now describe another algorithm that operates in O(N) on average.

Let h be a hash table with N buckets
O(N) – maybe even O(1)

For each element value in list
O(N)

if h.lookup(value) then report "yes"
O(1), assuming good hash; O(N) if poor

else h.insert(value)
O(1), assuming good hash; O(N) if poor

Return "no"
O(1)

Total cost
O(N)

1

What is your algorithm's worst case performance?

O(N2)

3
7.
What does the term "lazy" mean in lazy data structure? What is the advantage of a lazy data structure?

Lazy means that we compute relations among and even values of data elements as needed. The data and/or its relationships is thus implicit, rather than explicit as in normal data structures. This allows us to defer building parts of the data structure until and unless they are needed. This can give us a very compact representation, even when the structure is potentially infinite.

5
8.
Suppose f(n) is O(g(n)), show that max(f(n),g(n)) is O(g(n)). You must show this formally, using the definition of Big-Oh. In fact, as your first part of this answer, state formally what f(n) = O(g(n)) means.

f(n) is O(g(n)) if and only if there exist N(0, c>0, such that for all n(N, f(n) (g(n).

Let N' = N and c' = max(1, c)

Since f(n) is O(g(n) , for all n(N=N', f(n) (cg(n) (c'g(n)

Also, for all n, g(n) (g(n) (c'g(n). Thus, trivially, for all n(N', g(n) (c'g(n).

Combining, we have that for all n(N', max(f(n),g(n)) (c'g(n).

From iff condition on definition of order, we have that max(f(n),g(n)) is O(g(n)).

9.
Consider the Longest Common Subsequence (LCS) problem for string a1 a2… an and b1 b2 … bm. In solving this, you first build a matrix L, such that L[i,j] is the length of the lcs of a1 a2… ai and b1 b2 … bj. L[n,m] is then the length of the desired lcs. Actual lcs’s can be built by traversing L, starting at L[n,m].

4
a.)
Fill in the lcs length values of the following matrix, L, given strings santa and tastan. I have been kind enough to fill in the boundary values.

	a
	0
	1
	2
	2
	2
	3
	3

	t
	0
	1
	1
	1
	2
	2
	3

	n
	0
	0
	1
	1
	1
	2
	3

	a
	0
	0
	1
	1
	1
	2
	2

	s
	0
	0
	0
	1
	1
	1
	1

	
	0
	0
	0
	0
	0
	0
	0

	
	
	t
	a
	s
	t
	a
	n

4
b.)
Draw lines in L, above, that represent one path that may be used to construct an lcs. Draw your path so it doesn’t obscure your answer to part a.

What is the lcs associated with the path you traced?
ata

What is a second, distinct lcs?
sta or san

6
10.
Prove that, if T(n) = T(n/2) + n lg n, with the boundary condition that T(1) = 0, that T(n) = (lg n -1) 2n + 2. To make this more reasonable, assume n is a power of 2. Thus, T(2k) = T(2k-1) + k 2k, with the boundary condition that T(20) = 0, and you must show s(k): T(2k) = (k-1) 2k+1 + 2, for all k (0.

Basis: s(0):
T(20) = T(1) = 0, by the boundary condition of T's definition.

But, with k=0, (k-1) 2k+1 + 2 = (0-1) 20+1 + 2 = -2 + 2 = 0, and the basis is verified.

IH:
Assume, for some k(0, s(k). That is, assume T(2k) = (k-1) 2k+1 + 2

IS:
Prove s(k+1). That is, show T(2k+1) = (k-1+1) 2k+1+1 + 2 = k 2k+2 + 2.

T(2k+1)
= T(2k+1-1) + (k+1) 2k+1, by definition of T, since k+1>0.

= (k-1) 2k+1 + 2 + (k+1) 2k+1, by the Inductive Hypothesis.

= (2 k) 2k+1 + 2, by simple regrouping and algebra

= k 2k+2 + 2, and the Inductive Step is verified.

3
11.
Assume you have a sequence {a0, a1, … , an-1} of integers. You had a homework assignment to compute the maximum contiguous subsequence product. I then discussed this in class, and provided you a Java applet that efficiently solves the problem. Explain, in words, the essence of the algorithm we discussed.

We start off assuming a max of 1.

We then scan the sequence, first from left to right, then from right to left, computing sub-products.

We compare each sub-product with the max product seen so far

if the new product is greater we make it the new max estimate.

If we ever get a product of zero, we reset it to 1.

We also reset the sub-product to 1 when we turn the scan around, going right to left.

Resetting on zeros is legal since the max product can never have a zero sub-product.

Scanning in both directions takes care of the problem of having an odd number of negative terms causing us to miss the max sub-product when it's only seen as part of a negative sub-product.

1

What is the order (big Oh) in terms of n of this algorithm?

O(n)

1

What kind of algorithm is this (greedy, d&c, dynamic programming.)?
greedy

6
12.
Assume you have a sequence {a0, a1, … , an-1} of distinct integers. Further, assume that this sequence starts in strictly increasing order, reaches a highest value at some point, and then finishes in strictly decreasing order. Such a list is often called bitonic (it's the concatenation of two monotonic lists). Under the simplifying assumption that the highest value is not the last value in the sequence, present an efficient, in terms of worst-case performance, algorithm that returns the highest value in such a sequence.

int maxValue = maximum(a, 0, a.length – 1);
// call the service

public int maximum (int a[], int lo, int hi) { // return highest value in the bitonic list
if (lo >= hi) return a[lo];

int mid = (int) (lo + hi)/2;

if (a[mid] < a[mid+1]) lo = mid+1;

else hi = mid;

return maximum(a, lo, high);

}

OR

public int maximum (int a[], int lo, int hi) { // return highest value in the bitonic list
while (lo < hi) {

int mid = (int) (lo + hi)/2;

if (a[mid] < a[mid+1]) lo = mid+1;

else hi = mid;

}

return a[lo];

}

1

What is the order (big Oh) in terms of n of this algorithm?

O(lg N)

1

What kind of algorithm is this (greedy, d&c, dynamic programming.)?
d&c

13.
Consider the following labeled graph. This can be represented in a variety of ways. Two common choices are in an adjacency matrix or an adjacency list. I have done each for you. Write next to each of these representations the cost, in terms of the parameters N, the number of nodes or vertices (7 in our simple example), E, the number of edges (12 in our case), and K, the maximum number of edges emanating from any node (4 in our case), of doing each of the following operations.

2

Determine, for two given vertices v1 and v2, whether or not there is an edge between v1 and v2.

2

Compute the sum of the weights along all edges in the graph.

4

Produce a list of all the weighted edges in the form (v1, v2, weight) sorted low to high by weights.

[image: image53.wmf]A

B

F

E

G

C

D

6

7

5

7

7

3

7

11

6

14

5

3

 Adjacency Matrix Representation

	
	A
	B
	C
	D
	E
	F
	G

	A
	0
	(
	5
	3
	(
	(
	14

	B
	(
	0
	(
	(
	5
	7
	6

	C
	5
	(
	0
	11
	3
	7
	(

	D
	3
	(
	11
	0
	7
	(
	6

	E
	(
	5
	3
	7
	0
	(
	7

	F
	(
	7
	7
	(
	(
	0
	(

	G
	14
	6
	(
	6
	7
	(
	0

IsThereAnEdgeConnecting(v1, v2)

Complexity
O(1)

SumOfWeightsOfAllEdges()

Complexity
O(N2)

SortedListOfEdges()

Complexity
O(N2+ElgE)

Adjacency Lists Representation

	A
	((C,5),(D,3),(G,14))

	B
	((E,5),(F,7),(G,6))

	C
	((A,5),(D,11),(E,3),(F,7))

	D
	((A,3),(C,11),(E,7),(G,6))

	E
	((B,5),(C,3),(D,7),(G,7))

	F
	((B,7),(C,7))

	G
	((A,14),(B,6),(D,6),(E,7))

IsThereAnEdgeConnecting(v1, v2)

Complexity
O(K) or E/N
SumOfWeightsOfAllEdges()

Complexity
O(N+E)

SortedListOfEdges()

Complexity
O(N+ElgE)
A Better Quick Sort

/**

 * Sorts the specified sub-array of integers into ascending order.

 */

private static void sort1(int x[], int off, int len) {

// Insertion sort on smallest arrays

if (len < 7) {

 for (int i=off; i<len+off; i++)

for (int j=i; j>off && x[j-1]>x[j]; j--)

 swap(x, j, j-1);

 return;

}

// Choose a partition element, v

int m = off + len/2; // Small arrays, middle element

if (len > 7) {

 int l = off;

 int n = off + len - 1;

 if (len > 40) { // Big arrays, pseudomedian of 9

int s = len/8;

l = med3(x, l, l+s, l+2*s);

m = med3(x, m-s, m, m+s);

n = med3(x, n-2*s, n-s, n);

 }

 m = med3(x, l, m, n); // Mid-size, med of 3

}

int v = x[m];

A Better Quick Sort - 2

// Establish Invariant: v* (<v)* (>v)* v*

int a = off, b = a, c = off + len - 1, d = c;

while(true) {

 while (b <= c && x[b] <= v) {

if (x[b] == v)

 swap(x, a++, b);

b++;

 }

 while (c >= b && x[c] >= v) {

if (x[c] == v)

 swap(x, c, d--);

c--;

 }

 if (b > c)

break;

 swap(x, b++, c--);

}

// Swap partition elements back to middle

int s, n = off + len;

s = Math.min(a-off, b-a); vecswap(x, off, b-s, s);

s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);

// Recursively sort non-partition-elements

if ((s = b-a) > 1)

 sort1(x, off, s);

if ((s = d-c) > 1)

 sort1(x, n-s, s);

 }

A Better Quick Sort - 3
 /**

 * Swaps x[a] with x[b].

 */

 private static void swap(int x[], int a, int b) {

int t = x[a];

x[a] = x[b];

x[b] = t;

 }

 /**

 * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].

 */

 private static void vecswap(int x[], int a, int b, int n) {

for (int i=0; i<n; i++, a++, b++)

 swap(x, a, b);

 }

 /**

 * Returns the index of the median of the three indexed integers.

 */

 private static int med3(int x[], int a, int b, int c) {

return (x[a] < x[b] ?

(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :

(x[b] > x[c] ? b : x[a] > x[c] ? c : a));

 }

Average Case Performance of Quick Sort

The text details how we can show the average case performance of Quick Sort to be described by the recurrence

T(N) = ((N+1)/N) T(N-1) + K, where K(1

with boundary conditions T(0) = T(1) =1.

To find a closed form for T(N), we might be tempted to treat (N+1)/N as a small constant.
We can show that this won't work by considering the two possibilities:

Treat (N+1)/N as 1, since it approaches 1, as N approaches infinity.

But, then T(N) = O(N), and that's not possible since we already have shown that the best case performance of Quick Sort takes O(N lg N) time.

Treat (N+1)/N as 1+(, where (>0 is arbitrarily small.

But, then T(N) = O((1+()N), and that's not possible since we already know that the worst case performance of Quick Sort is O(N2), a polynomial, not an exponential.

We wish to show T(N) = O(N lg N). To do this, I tried to prove, inductively, that

s(N): T(N) ((N+1) (lg N + K), N(1

Well, I failed miserably. I was trying to avoid the proofs related to the Harmonic Series but, alas, my attempts were futile. I will add the proof later in the notes. For now, the operativeLatin term is "Mea Culpa, Mea Culpa, Mea maxima Culpa."

Partition Test Program # 1

package partition;

import java.io.*;

import java.util.*;

class PartitionTest {

public static void main(String[] args) throws IOException {

final int[] SIZEARY = { 16, 32, 128, 1024 };

final String[] ALGORITHM = { "DUMB", "SMART", " COMPRESSION" };

Random r = new Random(168886542);

Partition p;

for (int j = 0; j < SIZEARY.length; j++) {

for (int q = 0; q < ALGORITHM.length; q++) {

if (ALGORITHM[q].equals("DUMB")) p = new Partition(SIZEARY[j]);

else if (ALGORITHM[q].equals("SMART")) p = new SmartPartition(SIZEARY[j]);

else p = new CompressPartition(SIZEARY[j]);

System.out.println("*****BEGIN " + ALGORITHM[q] + " PARTITION*****");

System.out.println("Partition size: " + Integer.toString(SIZEARY[j]));

System.out.println(p.toString()); System.out.println();

Partition Test Program # 2

for (int i = 0; i < SIZEARY[j]-1; i++) {

int rep1, rep2;

do {

int el1 = Math.abs(r.nextInt())%SIZEARY[j];

int el2 = Math.abs(r.nextInt())%SIZEARY[j];

rep1 = p.find(el1); rep2 = p.find(el2);

} while (rep1 == rep2);

p.union(rep1,rep2);

// if ((i % 8) == 0) { System.out.println(p.toString()); System.out.println(); }

}

System.out.println(p.toString()); System.out.println();

p.resetStats();

for (int i = 0; i < 10000; i++) p.find(Math.abs(r.nextInt())%SIZEARY[j]);

System.out.println(p.toString()); System.out.println();

System.out.println("*****END OF " + ALGORITHM[q] + " PARTITION*****");

// System.out.println("Partition size: " + Integer.toString(SIZEARY[j]));

} // end for q

} // end for j

} // end of main

} // end of PartitionTest

ParentTree Class

class ParentTree {

ParentTree parent = null;

int element = 0;

int height = 0;

public ParentTree(int element) {

this.element = element;

}

}

Partition Class # 1

import java.io.*;

// Actual DumbPartition,

// But acts as SuperClass for Smart and Compress

public class Partition {

int inspected = 0, finds = 0;

ParentTree[] partitions = null;

public Partition(int size) {

partitions = new ParentTree[size];

for (int i=0; i<size; i++) partitions[i] = new ParentTree(i);

}

private int doFind(int element) {

inspected++;

if (partitions[element].parent == null) return element;

else return doFind(partitions[element].parent.element);

}

public int find(int element) {

finds++;

return doFind(element);

}

Partition Class # 2

public void union(int el1, int el2) {

int root1 = find(el1); int root2 = find(el2);

if (root1 != root2) partitions[root2].parent = partitions[root1];

}

public void resetStats() {

inspected = 0; finds = 0;

}

public String toString() {

int start = 0;

String trace = "Finds = " + finds + "; Calls = " + inspected + "\n";

int averagePathLength = 0;

if (finds>0) averagePathLength = (int)Math.rint((double)inspected/finds);

trace += "Average path length per Find = " + averagePathLength + "\n";

while (start < partitions.length) {

ParentTree parent = partitions[start].parent;

trace += start++ + ((parent == null) ? "::" : ("->" +(new Integer(parent.element).toString()))) + " ";

}

return trace;

}

}

Smart Partition Class

import java.io.*;

public class SmartPartition extends Partition {

public SmartPartition(int size) {

super(size); // I'd like a Number 2 Value Meal

}

public void union(int el1, int el2) {

ParentTree lower, higher;

int root1 = find(el1); int root2 = find(el2);

if (root1 != root2) {

if (partitions[root1].height > partitions[root2].height) {

higher = partitions[root1];

lower = partitions[root2];

}

else {

higher = partitions[root2];

lower = partitions[root1];

}

lower.parent = higher;

// checks to see if result tree is higher than original

if (lower.height == higher.height) ++(higher.height);

}

}

}
Compress Partition Class #1

import java.io.*;

public class CompressPartition extends Partition{

public CompressPartition(int size) {

super(size); // With a Coke

}

private int doFind(int element) {

inspected++;

if (partitions[element].parent == null) {
// base case

return element;

}

else {

// recurse to find representative

int root = doFind(partitions[element].parent.element);

return partitions[element].parent = partitions[root];

return root;

}

}

public int find(int element) {

finds++;

return doFind(element);

}

Compress Partition Class #2

// Uses SmartPartition's Union

public void union(int el1, int el2) {

ParentTree lower, higher;

int root1 = find(el1); int root2 = find(el2);

if (root1 != root2) {

if (partitions[root1].height > partitions[root2].height) {

higher = partitions[root1];

lower = partitions[root2];

}

else {

higher = partitions[root2];

lower = partitions[root1];

}

lower.parent = higher;

// checks to see if result tree is higher than original

if (lower.height == higher.height) ++(higher.height);

}

}

}

 WEEKS # 10
	1.
Algebra of Relations


	Union

	
	Intersection

	–
	Difference

	C (R)
	Selection

	(B1,…Bn (R)
	Projection

	R (Ai=Bj S
	Join

	R (S
	Natural Join

2.
Examples of Each Relational Operator – Use of trees to describe queries

3.
Complexity Analyses of Implementing Relational Operators

Naive versus intelligent versus specialized

4.
Algebraic Properties of Relational Operators

Reordering and changing operations to reduce costs

Relational Operators

Union
Set Union


Intersection
Set Intersection

–
Difference
Set Difference

C (R)
Selection
Select All Rows Having Property C

(B1,…Bn (R)
Projection
Keep Only Columns B1,…Bn

R (Ai=Bj S
Join
Merge/Keep Rows Where Ai in R is Same as Bj in S

R (S
Natural Join
Join Using the Single Common Attribute of R, S

Examples of Relational Operators
EMPLOYEES

	NAME
	ID

	Smith, Mary
	027

	Arco, Max
	145

	Simmons, Richard
	037

	Gonzalez, Rafael
	111

	Jones, Atticus
	621

	Torey, Phyllis
	006

	Casper, Leona
	427

EMPLOYEES union SHAREHOLDERS

	NAME
	ID

	Arco, Max
	145

	Blackman, Tonya
	088

	Casper, Leona
	427

	Gonzalez, Rafael
	111

	Jones, Atticus
	621

	Kolomotov, Karyl
	077

	Pham, Carole
	777

	Simmons, Richard
	037

	Smith, Mary
	027

	Ting, Xin
	099

	Torey, Phyllis
	006

	Torres, Alejandro
	174

SHAREHOLDERS

	NAME
	ID

	Simmons, Richard
	037

	Pham, Carole
	777

	Torres, Alejandro
	174

	Blackman, Tonya
	088

	Ting, Xin
	099

	Gonzalez, Rafael
	111

	Smith, Mary
	027

	Kolomotov, Karyl
	077

EMPLOYEES intersect SHAREHOLDERS

	NAME
	ID

	Gonzalez, Rafael
	111

	Simmons, Richard
	037

	Smith, Mary
	027

EMPLOYEES minus SHAREHOLDERS

	NAME
	ID

	Arco, Max
	145

	Casper, Leona
	427

	Jones, Atticus
	621

	Torey, Phyllis
	006

Examples of Relational Operators

EMPLOYED_BY

	NAME
	FIRM

	Smith, M.
	RCA

	Arco, M.
	Mitre

	Sim, R.
	Apple

	Garcia, R.
	Mitre

	Jones, A.
	TCBY

	Torey, P.
	RCA

	Carr, L.
	RCA

EMPLOYED_BY join HEALTH_PLANS

	NAME
	FIRM
	HMO

	Smith, M.
	RCA
	PPC

	Smith, M.
	RCA
	AVMED

	Smith, M.
	RCA
	Humana

	Arco, M.
	Mitre
	Humana

	Sims, R.
	Apple
	Kaiser

	Garcia,R.
	Mitre
	Humana

	Jones, A.
	TCBY
	PPC

	Torey, P.
	RCA
	PPC

	Torey, P.
	RCA
	AVMED

	Torey, P.
	RCA
	Humana

	Carr, L.
	RCA
	PPC

	Carr, L.
	RCA
	AVMED

	Carr, L.
	RCA
	Humana

HEALTH_PLANS

	FIRM
	HMO

	RCA
	PPC

	RCA
	AVMED

	RCA
	Humana

	Mitre
	Humana

	TCBY
	PPC

	Apple
	Kaiser

FIRM=Mitre (EMPLOYED_BY)

	NAME
	FIRM

	Arco, M.
	Mitre

	Garcia, R.
	Mitre

(HMO (HEALTH_PLANS)

	HMO

	PPC

	AVMED

	Humana

	Kaiser

Complexity of Relational Operators
	
	MaxSz
	MinSz
	Naive
	Pre-Sort;

Post-Sort
	Indexed

	R  S
	t = n+m
	max(n,m)
	nm
	n log n +
 m log m;

t log t
	t=n+m

	R  S
	min(n,m)
	0
	nm
	n log n +
 m log m;

t log t
	t=n+m

	R – S
	n
	0
	nm
	n log n +
 m log m;

t log t †
	t=n+m

	C (R)
	n
	0
	n
	no gain;

no gain
	k
Lucky!

	(– (R)
	n
	n, usual

1, rare
	n^2
	nlog n;

nlog n
	n

	R (S
	nm
	0
	nm
	no gain;

k+t log t ††

sort-join
	k+n or k+m

index-join

Assumes |R| = n, |S| = m, t = n+m, and |Result| = k

† An extra field is initially added to each result tuple to identify the relation from which this tuple came.
†† (a,k) in R becomes (k,a,R) and (k,b) in S is (k,b,S).

When doing a sequence of operations, it is critical to keep the size of intermediary results as small as possible. Reordering and deferring operations can be very helpful. In arithmetic A*B+A*C = A*(B+C), but second expression is usually faster than first.

Algebraic Laws for Relational Operators
Laws for Join
Limited Associativity
((R (A=B S) (C=D T)  (R (A=B (S (C=D T))

provided A is an attribute of R, B and C are different attributes of S, and D is an attribute of T.

Laws for Selection
Selection Pushing below Joins
(C (R (S))  (C (R) (S)

provided all attributes of C are in R

(C (R (S))  (R (C (S))

provided all attributes of C are in S

Selection Splitting
(C and D(R))  (C (D (R))

Selection Commutivity
(C (D (R))  (D (C (R))

Algebraic Laws for Relational Operators -- Continued
Laws for Projection

Projection Pushing below Unions
(L (R  S))  (L (R)  L (S))

Limited Projection Pushing below Joins
(L (R (A=B S))  (L (M (R) (A=B N (S)))

where

1) M is attributes of L from R followed by A, if not in L,

2) N is attributes of L from S followed by B, if not in L

Projection Identity
L (R)  R, when L is all attributes of R

Query on a Relational Database
RELATIONS

1.
CSG
(Course-StudentId-Grade)

2.
SNAP
(StudentId-Name-Address-Phone)

3.
CDH
(Course-Day-Hour)

4.
CR

(Course-Room)

QUERY

“Where is C. Brown 9AM on Mondays?”

An Approach

((((SG (SNAP) (CDH) (CR)

Gets Tuples

(c, s, g, n, a, p, d, h, r)

Can Select

Name = “C. Brown”

and (Day=“M”) and (Hour=“9AM”)

and Project Room

Query Tree
Leaf nodes in the tree are relations.

Interior nodes are relational operators.

Query can be interpreted from leaves towards root, with intermediate results generated at each node.

[image: image54.wmf]p

Name ="

C.Brown"

and

Day="M" and Hour="9AM"

s

Room

¥

CR

CDH

SNAP

CSG

¥

¥

The final Join is enormous, even though we require just one item in the result.

Optimization by Pushing Selection
Push Selection below Join

Push in both directions, but remove slection on right branch, since CR has no Name, Day or Hour field.

[image: image55.wmf]p

Name ="

C.Brown"

and

Day="M" and Hour="9AM"

s

Room

¥

CR

CDH

SNAP

CSG

¥

¥

This makes final Join trivial, since there will now be only one tuple coming up the left branch.

Optimization by Splitting Selection
Split Selection to prepare for sending only relevant parts of the Selection down each branch on the next Join.

[image: image56.wmf]p

Name ="

C.Brown"

s

Room

¥

CR

CDH

SNAP

CSG

¥

¥

Day="M" and Hour="9AM"

s

Could Split again, but that won’t help

Push Selections on Separate Paths
Push Selections down only those paths that involve selected attributes

[image: image57.wmf]p

Name ="

C.Brown"

s

Room

CR

CDH

SNAP

CSG

Day="M" and Hour="9AM"

s

¥

¥

¥

Day / Hour apply to only CDH.

Name applies to only SNAP, so keep on Pushing

Push Name Selections to SNAP
Push Name Selection down toward SNAP since CSG does not involve Selected attributes

[image: image58.wmf]p

Name ="

C.Brown"

s

Room

CR

CDH

SNAP

CSG

Day="M" and Hour="9AM"

s

¥

¥

¥

Can’t Push Selections any farther down.

Push Projection Down
Must Push Projection on attributes of Join as well as that in the original Projection.

[image: image59.wmf]p

Name ="

C.Brown"

s

Room

¥

CR

CDH

SNAP

CSG

¥

¥

Day="M" and Hour="9AM"

s

p

Course

Join attribute is Course, so we project to Course alone on left, since Room is not an attribute on left. Pushing a Projection of Room and Course to right is useless.

Push Projection Down Farther
Push Projection down middle Join.

[image: image60.wmf]p

Name ="

C.Brown"

s

Room

¥

CR

CDH

SNAP

CSG

¥

¥

Day="M" and Hour="9AM"

s

p

Course

p

Course

Course Projection can restrict size on both sides.

Push Projection Down to Bottom
Push Projection down as far as possible.

[image: image61.wmf]p

Name ="

C.Brown"

s

Room

¥

CR

CDH

SNAP

CSG

¥

¥

Day="M" and Hour="9AM"

s

p

Course

p

Course

p

Course,

StudentId

p

StudentId

Just need the attributes that play a role in Join and are kept after Projection.

Relax on Some Projections
There’s little to be gained by Projecting out attributes that disappear in next step. We relax by not removing the Grade attribute since it disappears at next Join.

[image: image62.wmf]p

Name ="

C.Brown"

s

Room

¥

CR

CDH

SNAP

CSG

¥

¥

Day="M" and Hour="9AM"

s

p

Course

p

Course

p

StudentId

This may or may not avoid some wasted effort.

WEEKS # 11 & 12
1.
Basics Terminology Associated with Graphs

nodes/arcs (binary relation), unique node name, head/tail of arc, predecessors/successors, in-degree and out-degree of nodes and graph, node/arc labels, paths (list of successor nodes), path length, cycles, simple cycle (rep at start/end only), simple cycle derived from non-simple one, cyclic/acyclic graph, acyclic paths, edges, undirected graphs (symmetric relation), adjacent nodes/neighbors, degree of nodes and graph, binary tree as undirected graph of degree (3 with distinguished node (root), paths in undirected graphs, simple cycle of length 3 or more is cycle notion for undirected graph.

2.
Examples of Graphs

Task precedence graph – must be acyclic; Computer networks – often cyclic, e.g., token ring.

Control flow graphs and intraprocedural data flow analysis – usually cyclic.

Calling graphs, interprocedural analysis , direct/indirect recursion evidenced by cycles.

Undirected graphs – highway and airline maps.

3.
Data Structures

Adjacency lists – common with sparse graphs

Adjacency matrix – common with dense graphs

Time

Operation
Dense Graph
Sparse Graph

Look up arc
Matrix

Either

Successor
Either

Lists

Predecessor
Matrix

Either

Matrix is symmetric for undirected graph – can use triangular mapping techniques.

Can extend both methods for labeled graphs

4.
Connected Components of Undirected Graphs

Divide graph into maximal connected subgraphs (connected components).

A graph with a single connected component is said to be connected.

Connected components as equivalence classes.

Partition ADT to compute connected components.

5.
Spanning Trees and Greedy Algorithms

Correctness Analysis of Kruskal’s Algorithm

Prim’s Algorithms ​– Comparison to Kruskal’s

Flow Graphs
A flow graph G = (N, E, s) refers to a directed graph (N, E) and an initial node s in N, where there is a path from s to every node of G. Nodes can be statements or basic blocks (single entry, single exit). Commonly, they are the latter.

Program SquareRoot;

var
L, N, K, M : integer; C : boolean;

begin

read(L);
(* start of block B1 *)

N := 0; K := 0; M := 1;
(* end of block B1 *)

loop

K := K + M;
(* start of block B2 *)

C := K > L;

if C then break;
(* end of block B2 *)

N := N + 1;
(* start of block B3 *)

M := M + 2
(* end of block B3 *)

end loop;

write(N)

(* all of block B4 *)

end. (* SquareRoot *)

[image: image63.wmf]1

2

3

4

A More Complex Flow Graph
[image: image64.wmf]1

2

3

4

5

8

10

9

7

6

Partitions and Connected Components

import java.util.*;

……

Partition connectedComponents(int n, Collection edges) {

p = new Partition(n);

Iterator edgeIterator = edges.iterator();

while (edgeIterator.hasNext()) {

edge = (Edge) edgeIterator.next();

p.union(edge.node1, edge.node2);

}

return p;

}
Assume m is max of n, the number of nodes, and e, number of edges, then this takes O(m*f), where f is cost of a Find operation (the basis for Union). Text uses log2(n) and log*2(n) find, so cost is O(m log*2n). This is almost O(m), so that’s a clue that there may be a direct O(m) algorithm – there is one!

Note: I'm assuming an available Edge and Partition class. Imports may be needed!

Spanning Trees

Assume that G = (V, E), where G is an undirected graph, V is the set of vertices (nodes), and E is the set of edges.

A spanning tree of G is a subgraph which is a tree that encompasses all nodes in the original graph. Such a tree will commonly include just a subset of the original edges. Here, by tree, we mean a graph with no simple cycles. We ignore the normal designation of a root and we do not order nodes.

If G is a single connected component, then there is always a spanning tree.

Adding weights to edges gives us the minimum spanning tree problem, where we wish to span with edges whose sum is minimum among all spanning trees.

Spanning Trees

Consider four nodes, fully connected as below,

[image: image65.wmf]
The spanning trees are:

[image: image66.wmf]
Min Spanning Tree–Kruskal's Algorithm

Weights could be distances, costs, signal degradation, …

Feasible – There are no simple cycles at every stage

import java.util.*;

……

List kruskalMinSpan (int n, List edges) {

p = new Partition(n);

spanningEdges = new List();

sort(edges); // sorted low to high by cost

Iterator edgeIterator = edges.iterator();

while (edgeIterator.hasNext()) {

edge = (Edge) edgeIterator.next();

int p1 = p.find(edge.node1); int p2 = p.find(edge.node2);

if (p1 != p2) {

p.union(edge.node1, edge.node2);

spanningEdges.add(edge);

}

}

return spanningEdges;

}
Kruskal’s Algorithm in Action

[image: image67.wmf]1

2

3

4

5

6

10

50

15

35

40

45

25

55

20

30

Edge
Cost
Graph
(1,2)
10
[image: image68.wmf]1

2

(3,6)
15
[image: image69.wmf]1

2

6

3

(4,6)
20
[image: image70.wmf]1

2

6

3

4

(2,6)
25
[image: image71.wmf]1

2

6

3

4

(1,4)
30, Reject

(3,5)
35
[image: image72.wmf]1

2

6

3

4

5

(2,5), (1,5), (2,3)
40, 45, 50, Reject

Min Spanning Tree–Prim’s Algorithm

[image: image73.wmf]1

2

3

4

5

6

10

50

15

35

40

45

25

55

20

30

Weights could be distances, costs, signal degradation, …Feasible – Edges form a tree (acyclic), A, at every stage

Optimization– At each point choose edge (u,v) so (u,v) is minimum weight edge allowing A  (u,v) to be a tree

Edge
Cost
Tree

(1,2)
10
[image: image74.wmf]1

2

(2,6)
25
[image: image75.wmf]1

2

6

(3,6)
15
[image: image76.wmf]1

2

6

3

(6,4)
20
[image: image77.wmf]1

2

6

3

4

(1,4)
Reject

(3,5)
35
[image: image78.wmf]1

2

6

3

4

5

Min Spanning Tree–Prim's Algorithm

Weights could be distances, costs, signal degradation, …

Feasible – There are no simple cycles at every stage.

Greedy – We grab the closest node to one of the ones that has already been included.

There are lots of ways to implement Prim’s algorithm.

We will study an O(N2) way.

Other implementations are O(MlgN), where M = max (|E|, N)

Min Spanning Tree–Prim's Algorithm

program PrimMinSpan;

var
N, j, k : Integer;

Adjacency : AdjacencyMatrix;

V : set of 1..MaxNodes;

Dist, Source: Array [1..MaxNodes]

begin
(* Assume N nodes, labeled 1 to N *)

GetGraph(N, Adjacency);

Dist := Adjacency[1];

V := [2..N];

Source[1] := 0;

{ Root has no source }

for j in V do

Source[j] := 1;
{ Distances are from root }

while V <> [] do begin

k := index in V with smallest value in Dist;

V := V – [k];

for j in V do

if Dist[j] > Adjacency[k,j] then begin

Dist[j] := Adjacency[k,j]; Source[j] := k

end;

end;

end.

Applying Prim’s Algorithm

[image: image79.wmf]1

2

3

4

5

6

10

50

15

35

40

45

25

55

20

30

Node
Dist/Source
Cost
Tree
1
[0/0,10/1,(/1,30/1,45/1,(/1]

2
[0/0,10/1,50/2,30/1,40/2,25/2]
10
[image: image80.wmf]1

2

6
[0/0,10/1,15/6,20/6,40/2,25/2]
25
[image: image81.wmf]1

2

6

3
[0/0,10/1,15/6,20/6,35/3,25/2]
15
[image: image82.wmf]1

2

6

3

4
[0/0,10/1,15/6,20/6,35/3,25/2]
20
[image: image83.wmf]1

2

6

3

4

5
[0/0,10/1,15/6,20/6,35/3,25/2]
35
[image: image84.wmf]1

2

6

3

4

5

WEEK # 12
1.
Parallelizing Prim's Algoritm

2.
Topological sort (O(M))

3.
Reflexive Transitive Closure of a Directed (or Undirected) Graph

Use of a Boolean Adjacency Matrix to represent edges

Analysis – correctness and O(N3) time

4.
Shortest Path Problem

Weights on arcs

The Weary Traveler or Shortest Path Problem

5.
Lousy Weary Algorithm

Use of an Adjacency Matrix to represent weighted arcs

Infinite weights for no direct connection

Terribly exponential approach

6.
Floyd's Algorithm – All Paths

Again, use of an Adjacency Matrix to represent weighted arcs

Use Principle of Optimality

Just a variant of Warshall’s Algorithm

7.
Dijkstra's Algorithm

Uses adjacency lists and a POT

Block-Striped Partitioning

Using p processors and N nodes.

Partition N2 Adjacency matrix into p groups of N/p columns.

Partition Dist and Source into p groups of N/p elements.

Processor i, 1(i(p, must manage a block of Adjacency columns, and a block of Dist and Source elements, ranging from the (i-1)*(N/p)+1-th to the iN/p-th.

Need to intialize just N/p elements on each processor.

Min on each processor needs to be computed, and then a global min must be found (accumulation) and the index of this node reported (one to all broadcast).

After receiving index of min, each processor must update its share of Dist and Source lists.

This process continues until no more nodes are left to be selected.

Analyzing Parallel Prim's Algorithm

Initialization time is just N/p.

The time to find a Min starts with N/p time for local mins, is followed by a single node accumulation, and then by a one-all broadcast of the selected node.

The time to update the Dist and Source lists is N/p.

The loop runs N times, and there is a TRUE DEPENDENCY between successive iterations of the loop. This means we must complete iteration i, before we can start iteration i+1.

The computation time is O(N2/p).

The communication time is dependent on the architecture. On a Hypercube, accumulation and one-all broadcast are both O(lg p). On a mesh, these times are O((p).

Tp (Hypercube) = O(N2/p) + O(N lg p).

Tp (Mesh) = O(N2/p) + O(N (p).

E (Hypercube) = 1/(1 + p lg p / N)

E (Mesh) = 1/(1 + p1.5 / N)

E (Hypercube) = O(1) if p = O(N/ lg N)

E (Mesh) = O(1) if p = O(N2/3)

Topological Sort

boolean topsort() {

int counter = 0;

Queue q = new Queue();

for each vertex u

if (--u.indegree == 0) q.enqueue(u);

while (!q.isEmpty()) {

Vertex v = q.dequeue();

v.topNum = ++counter; // sort position

for each u adjacent to v

if (--u.indegree == 0) q.enqueue(u);

}

return counter == NUM_VERTICES;

}

Order is O(|E| + |V|) = O(M), where M is max(|E|, |V|)

In other words, order is size of graph.

Reflexive Transitive Closure

The Problem:

Given a graph, G, determine for which pairs of nodes, (A,B), there is a path between A and B.

[image: image85.wmf]A

B

F

E

G

C

D

Array representation – 1 is True; 0 is False

A
B
C
D
E
F
G

A
1
0
1
1
0
0
1

B
0
1
0
0
0
0
0

C
0
0
1
0
1
1
0

D
0
0
0
1
1
0
1

E
0
1
0
0
1
0
0

F
0
1
0
0
0
1
0

G
0
1
0
0
1
0
1

Warshall’s “Can’t Get There from Here”

public void warshallsAlgorithm() {

//for each pivot try all pairs of nodes

for (int pivot = 0; pivot < N; pivot++)

for (int v = 0; v < N; v++)

for (int w = 0; w < N; w++)

if (v != w)

connectedMatrix[v][w] = connectedMatrix[v][w] ||

(connectedMatrix[v][pivot] && connectedMatrix[pivot][w]);

}

Analysis easily shows that this is O(N3).

Weary Traveler – Shortest Path

The Problem:

Given a graph (a dag), G, with weighted arcs, and two nodes, A and B, determine the minimum weight path from A to B.

Greedy fails here: Get 3 + 6 + 6 = 15; but can get 5 + 3 + 5 = 13

[image: image86.wmf]A

B

F

E

G

C

D

Source

Sink

6

7

5

7

7

3

7

11

6

14

5

3

Array representation

A
B
C
D
E
F
G

A
0
(
5
3
(
(
14

B
(
0
(
(
(
(
(
C
(
(
0
(
3
7
(
D
(
(
11
0
7
(
6

E
(
5
(
(
0
(
(
F
(
7
(
(
(
0
(
G
(
6
(
(
7
(
0

Lousy Weary Traveler Solution

const
INFINITY = 9999;

FirstCity = 'A';

LastCity = 'G';

type
City = FirstCity .. LastCity;

var

Dist : array[City] of array[City] of Word;

procedure Weary (Source, Sink : City) : Word;

var

cost, c : Word;

intermediary : City;

begin

if Source = Sink then cost := 0

else begin

cost := INFINITY;

for intermediary := FirstCity to LastCity do

if (Dist[Source, intermediary] < INFINITY) and

(Source <> intermediary) then

cost := min(cost,

Dist[Source,intermediary]+Weary(intermediary,Sink));

end;

Weary := cost

end; (*Weary*)

OR
begin

if Source = Sink then cost := 0

else begin

cost := INFINITY;

for intermediary := FirstCity to LastCity do

if (Dist[intermediary, Sink] < INFINITY) and

(Sink <> intermediary) then

cost := min(cost,

Dist[intermediary,Sink]+Weary(Source,intermediary));

end;

Weary := cost

end; (*Weary*)

Analysis of Lousy Weary Algorithm

We would like to determine the number of times we execute the loop body in the procedure Weary. That is the dominant factor.

Consider the first call. The number of cities = N. Thus we will execute the loop body exactly N times, plus the times associated with each recursive call. At worst, the source is connected to all other nodes. So there can be up to N-1 calls to Weary. Each one of them will do N iterations, plus of course the work done in their recursive calls. But now, the maximum number of node connections is only N-2, since there cannot be cycles, and therefore the source is unreachable.

Looking at a timing function, where K is the number of nodes that can be directly connected to the current source.

T(K) = N + (K) * T(K - 1)

T(0) = N

We would start at T(N-1), since the first source can be connected to at most N-1 other nodes. Clearly, if we ignore the N+ part, we have K!, or (N-1)! for the problem at hand. In fact a careful analysis shows this is even worse.

Floyd’s All Shortest Paths Algorithm

final int INFINITY = Integer.MAX_VALUE; // choose value not used in weights

private boolean connected(int v, int w) {

return adjacencyMatrix[v][w] != INFINITY)

}

public void floydsAlgorithm() {

for (int pivot = 0; pivot < N; pivot++)

for (int v = 0; v < N; v++)

for (int w = 0; w < N; w++) {

if (connected(v,pivot) && connected (pivot,w)) {

int tempDistance = adjacencyMatrix[v][pivot] +

adjacencyMatrix[pivot][w];

if (tempDistance < adjacencyMatrix[v][w])

adjacencyMatrix[v][w] = tempDistance;

}

}

Analysis again shows that this is O(N3).

Is there a way to get closer to size of graph for each starting point?

Adjacency Lists for Shortest Path

[image: image87.wmf]A

B

F

E

G

C

D

Source

Sink

6

7

5

7

7

3

7

11

6

14

5

3

Graph Representation Using Adjacency Lists

GRAPH
dist (to A)
toPOT
adjacency

A
0
1
((C,5),(D,3),(G,14))

B
(
2
()

C
(
3
((E,3),(F,7))

D
(
4
(C,11),(E,7),(G,6))

E
(
5
((B,5))

F
(
6
((B,7))

G
(
7
((B,6),(E,7))

POT
node

1
A

2
B

3
C

4
D

5
E

6
F

7
G

last

Dijkstra’s Shortest Paths Algorithm

const
FirstCity = 'A';
LastCity = 'G';

type
City = FirstCity .. LastCity;

POTCity = 1..(ord(LastCity)-ord(FirstCity))+1;

Graph = array[City] of (* see above *)

POT = array[POTCity] of City;

var

G : Graph; POTCities: POT; last: POTCity;

procedure swap(a,b : POTCity);

var

temp : City;

begin

temp := POTCities[b];

POTCities[b] := POTCities[a];
POTCities[a] := temp;

G[POTCities[a]].toPOT := a;

G[POTCities[b]].toPOT := b

end;

procedure Dijkstra;

var

u, v : City;
p : List;

begin

Initialize;

while last>1 do begin

v := POTCities[1]; (* pick this one to settle *)

swap(1, last); last := last-1; bubbleDown(1); (* dist is priority *)

p := G[v].adjacency;

while p<>NIL do begin

u := p^.name;

G[u].dist := min(G[u].dist,G[v].dist+p^.label);

bubbleUp(G[u].toPOT);

p := p^.next

end

end

end; (* Dijkstra *)

Analysis of Dijkstra’s Algorithm

This is a Greedy algorithm in that it always does the best it can at each step.

To run it for one node takes O(M  log2 N) where M is max of N and number of arcs. This is just a log factor away from the time it takes to look at the graph. To get “All Paths”, we need to run this N times, getting O(N  M  log2 N). If M is close to N2, then this runs worse than Floyd’s algorithm. If M is small then this is better. There is an N2 implementation of Dijkstra’s algorithm which can be used to create a competitive N3 all path algorithm, but it’s more complicated than Floyd’s.

Greedy N2 Shortest Paths Algorithm

const
FirstCity = 'A';
LastCity = 'G';

type
City = FirstCity .. LastCity;

var

Dist: array[City] of array[City] of Word;

procedure Greedy;

var

u, v : City;
shortest : Word;

short: array[City] of Word; (* from source *)

settled, unsettled : Set of City;

begin

(* initialize the shortest paths from FirstCity *)

for u:=FirstCity to LastCity do

short[u] := Dist[FirstCity,u];

short[FirstCity] := 0;

(* initially only FirstCity is a settled node *)

settled := [FirstCity];

unsettled := [succ(FirstCity) .. LastCity];

(* iterate until all nodes are settled *)

while unsettled <> [] do begin

(* greedily pick next one to settle *)

shortest := INFINITY;
(* a global const *)

for v in unsettled do

if short[v] <= shortest then

begin u := v; shortest := short[v] end;

settled := settled + [u]; unsettled := unsettled - [u];

(* fix the current shortest paths from FirstCity *)

for v in unsettled do

short[v] := min(short[v],short[u]+Dist[u,v])

end

end; (* Greedy *)

This is N2. Why use <= in greedy part? What would happen to complexity if short were kept as a heap?

WEEKS # 13 (1 day)
1.
Depth First Search

Basic algorithm for Depth First Search Tree

Classification of arcs in depth first search tree T created from graph G

Tree arcs – arcs u  v in G, such that dfs(v) is called by dfs(u)

Forward arcs – arcs u  v in G, such that v is a descendant but not child of u in T

Backward arcs – arcs u  v in G, such that v is an ancestor of u in T (can have u=v)

Cross arcs – arcs u  v in G, where v is neither an ancestor nor descendant of u in T

cross arcs are always right to left

Depth First Search Forest – Note why DFS Tree is sufficient in program flow graphs

Running Time of DFS Algorithm

Postorder, rPostorder numberings during DFS

Relation between Postorder number of a and v, when u  v in G

if u  v is a tree or forward arc then v follows u in T and so v<u in postorder

if u  v is a cross arc then v is to left of u in T and so v<u in postorder

if u  v is a backward arc and v(u then v precedes u in T and so v>u in postorder

if u  v is a backward arc and v=u then v and u are the same and v=u in postorder

in general, if u  v is a backward arc then v(u in postorder

From above relation, we can easily find the backward arcs as those arcs u  v where u, the tail, has postorder number equal to or less than that of v, the head.

2.
Algorithm Based on Depth First Search

Finding cycles in a directed graph

Topological sort

Reachability problem

Connected components of an undirected graph

Comparison to reflexive transitive closure by Warshall's

3.
Processor scheduling

Basic definition and complexity

Critical path scheduling

Unit Execution Tree and DAG

4.
NP and NP-complete problems

Categorizing Arcs in DFS Tree

[image: image88.wmf]10

9

7

6

5

2

8

1

4

3

cross

back

back

forward

Depth First Search

procedure dfs(u : NODE);

var
p : LIST;

v : NODE;

begin

G[u].mark := VISITED;

p := G[u].adjacency;

while p<>NIL do begin

v := p^.nodeName;

if G[v].mark = UNVISITED then dfs(v);

p := p^.next

end

end; (* dfs *)

procedure dfsForest(G : GRAPH);

var
u : NODE;

begin

for u:=1 to n do

G[u].mark := UNVISITED;

for u := 1 to n do

if G[u].mark = UNVISITED then dfs(u)

end; (* dfsForest *)

Postorder Numbering in DFS

procedure dfs(u : NODE);

var
p : LIST;

v : NODE;

begin

G[u].mark := VISITED;

p := G[u].adjacency;

while p<>NIL do begin

v := p^.nodeName;

if G[v].mark = UNVISITED then dfs(v);

p := p^.next

end;

k := k+1;

G[u].postorder := k
end; (* dfs *)

procedure dfsForest(G : GRAPH);

var
u : NODE;

begin

k := 0;

for u:=1 to n do G[u].mark := UNVISITED;

for u := 1 to n do if G[u].mark = UNVISITED then dfs(u)

end; (* dfsForest *)

Testing for Cycles

function TestAcyclic(G : GRAPH) : Boolean;

var
answer : Boolean;

p : LIST;

u, v : NODE;

begin

answer := TRUE;

dfsForest(G);

for u:=1 to n do begin

p := G[u].adjacency;

while p<>NIL do begin

v := p^.nodeName;

if G[u].postorder <= G[v].postorder then

answer := FALSE;

p := p^.next

end

end;

TestAcyclic := answer

end; (* TestAcyclic *)

DFS Based Algorithms

Assume N nodes, E edges and M = max(N, E)

Finding Cycles in a directed graph in O(M).

Numbering of nodes by DFS gives indices for a topological sort (use reverse postorder.)

This is O(M), just like sort we previously presented.

Seeing if B is reachable from A. Choose A as root and see if B marked is O(M).

Connected components are identified by forest built in DFS.

Number of components is number of external calls to dfs. This takes O(M).

Compute reflexive transitive closure by N DFS’s This takes O(NM).

In the very worst case, DFS is O(N3), just like Warshall's algorithm.

Scheduling of Processes

A Process Scheduling Problem can be described by

m processors P1, P2, …, Pm,

processor timing functions S1, S2, …, Sm, each describing how the corresponding processor responds to an execution profile,

additional resources R1, R2, …, Rk, e.g., memory and other serially reusable items,

a transmission cost matrix Cij (1 (i , j (m), based on processor data sharing,

tasks to be executed T1, T2, …, Tn,

task execution profiles A1, A2, …, An,

a partial order defined on the tasks
such that Ti < Tj means that Ti must complete before Tj can start execution,

a communication matrix Dij (1 (i , j (n) where Dij can be non-zero only if Ti < Tj,

weights W1, W2, …, Wn interpreted as the cost of deferring execution of a task.

A Simple Scheduling Problem – Mean Completion Time
The intent of a mean completion time scheduling algorithm (fast turnaround) is to minimize the average of the weighted completion times of all tasks, while obeying the constraints of the task system. Weights can be made unusually large to impose actual deadlines.

This problem can be made simple (amenable to a greedy algorithm), if we exclude all resources but time, and have no task precedences. The optimal solution is to just schedule tasks from shortest to longest, without concern for the number of processors.

For example if we have tasks with running times of {1, 2, 3, 4}, we can run these on one processor so the average completion time is

(1 + (1+2) + (1+2+3) + (1+2+3+4))/4 = 5

Any other ordering will increase this value by causing a larger time to appear earlier and be repeated too often. this even works on more than one processor. E.g., on two, we have

(1 + 2 + (1+3) + (2+4))/4 = 13/4

A Hard Scheduling Problem – Final Completion Time
The intent of a final completion time scheduling algorithm (increased throughput) is to minimize the largest weighted completion times among all tasks, while obeying the constraints of the task system. Weights can be made unusually large to impose actual deadlines.

The general scheduling problem is quite complex, but even simpler instances, where the processors are uniform, there are no additional resources, there is no data transmission, the execution profile is just processor time and the weights are uniform, are very hard.

In fact, if we just specify the time to complete each task and we have no partial ordering, then finding an optimal finishing time schedule on two processors is an NP-complete problem. (The notion of NP Complete is on subsequent overheads.)

Consider the tasks taking times {1, 2, 3, 4}

An optimal mean completion time schedule on two processors is (1 + 2 + (1+3) + (2+4))/4 = 13/4. This schedule is poor for a best final completion time – in fact, it takes 6 units to complete the three tasks. A better solution is divide these evenly, matching the 1 and 4, and the 2 and 3. Completion then occurs in 5 units. Consider a similar, very simple case of {1, 1, 2}. The best mean completion time schedule of (1 + 1 + (1+2))/3 = 5/3 gives the worst final completion time schedule (3 units) versus the best schedule of 2 units.

2-Processor Scheduling
The problem of optimally scheduling n tasks T1, T2, …, Tn onto 2 processors with an empty partial order < is the same as that of dividing a set of positive whole numbers into two subsets, such that the numbers are as close to evenly divided. So, for example, given the numbers

3, 2, 4, 1

we could try a “greedy” approach as follows:

put 3 in set 1

put 2 in set 2

put 4 in set 2 (total is now 6)

put 1 in set 1 (total is now 4)

This is not the best solution. A better option is to put 3 and 2 in one set and 4 and 1 in the other. Such a solution would have been attained if we did a greedy solution on a sorted version of the original numbers. In general, however, sorting doesn’t always work.

2-Processor Scheduling
Try the unsorted list

7, 7, 6, 6, 5, 4, 4, 5, 4

Greedy (Always in bucket that is least used)

7, 6, 5, 5 = 23

7, 6, 4, 4, 4 = 25

Optimal

7, 6, 6, 5 = 24

7, 4, 4, 4, 5 = 24

Sort it (high to low)
Sort it (low to high)

7, 7, 6, 6, 5, 5, 4, 4, 4
4, 4, 4, 5, 5, 6, 6, 7, 7

7, 6, 5, 4, 4 = 26
4, 4, 5, 6, 7 = 26

7, 6, 5, 4 = 22
4, 5, 6, 7 = 22

Even worse than greedy unsorted
2-Processor with Partial Ordering

[image: image89.wmf]T1

1

T6

3

T5

3

T4

3

T2

2

T3

4

T1

T4

T2

T3

T5

T6

List Schedule with L = {T1

,T2,T3,T4,T5,T6}

T1

T3

T5

T6

T1

T3

T5

T6

T4

T2

T4

T2

T3

Non-Preemptive, Delays Allowed

Preemptive

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

Anomalies Everywhere

More Anomalies

NP Problems
There is a large class of problems for which no fast algorithms have been devised, but for which no proof has ever been presented that confirms the inherent intractability of these problems.

Of particular interest is a class of problems that can be solved in polynomial time, provided we can always make the correct decision whenever the algorithm has a choice between courses of action.

For example, consider the simple 2-processor scheduling problem, restructured as a decision problem. We could just guess which processor to assign to each task. Then it would be a simple matter to check to see if our guesses were correct. This algorithm would clearly be polynomial, but it would only work if our guesses were correct on the first try. If, in contrast, we had to try another guess and then another guess, we would be no better off than running a try all combinations algorithm.

Such problem are said to be in NP, the class of problems solvable in polynomial time by a non-deterministic algorithm.

NP Problems and Parallelism
The class NP includes all easy problems, since, if we can solve a problem in polynomial time without guessing, we can clearly solve it in polynomial time with guesses.

The class NP can also be categorized as consisting of problems that can be solved in polynomial time on a machine that has an unbounded number of processors (the ultimate parallelism). This should be evident, since we could alter the non-determinism so that it starts a separate machine for each guess. We might have an exponential number of processors running in parallel, but no one of them will take more than polynomial time to gets its task done. We then say “yes” to the original question if any of the processors says “yes”.

NP-Complete Problems
The class NP has some members that are the hardest ones in this class. These problems are called NP-Complete, and are such that, if any of them submits to a fast algorithm, then all the NP problems will have been shown to be easy. Similarly, if any can be shown to be intractable then all NP-complete problems will have been shown to be intractable. The 2-processor scheduling and the bin packing problems are instances of NP-complete problems.

One of the big problems of modern computer science is the question

“Is P = NP?”

Here P stands for the class of problems that can be solved in polynomial time by a conventional, deterministic algorithm running on a machine with a bounded number of processors. The solution to this question lies in our being able to determine the complexity of any NP-complete problem. If we can demonstrate a conventional polynomial algorithm for any NP complete problem, then all such problems are in P, and hence are tractable. If any NP-complete problem can be shown inherently exponential, then P (NP.

Heuristics and NP-Completeness
While it is not known whether or not P = NP?, it is clear that we need to “solve” problems that are NP-complete since many practical scheduling and networking problems are in this class. For this reason we often choose to find good “heuristics” which are fast and provide acceptable, though not perfect, answers. The First Fit and Best Fit algorithms we previously discussed are examples of such acceptable, imperfect solutions to bin packing.

Critical Path or Level Strategy – UET
A UET is a Unit Execution Tree. Our Tree is funny. It has a single leaf by standard graph definitions.

1.
Assign L(T) = 1, for the leaf task T

2.
Let labels 1, …, k-1 be assigned. If T is a task with lowest numbered immediate successor then define L(T) = k (non-deterministic)

This is an order n labeling algorithm that can easily be implemented using a breadth first search.

Note: This can be used for a forest as well as a tree. Just add a new leaf. Connect all the old leafs to be immediate successors of the new one. Use the above to get priorities, starting at 0, rather than 1. Then delete the new node completely.

Note: This whole thing can also be used for anti-trees. Make a schedule, then read it backwards. You cannot just reverse priorities.

Applying Level Strategy to UET
 [image: image90.wmf]1

2

3

4

5

6

7

8

9

10

11

12

13

14

TREE

14

13

11

10

12

9

8

7

5

6

4

3

2

1

M=3

Theorem: Level Strategy is optimal for unit execution, m arbitrary, forest precedence
Assigning Processors (m processor schedule, n tasks)
Once priorities are set, we can use partitions to assign processors. We start with n partitions {1..n}, where partition t, contains the member t. The t-th partition is used to manage time t of our schedule. Now, initially, all initial tasks (nodes, having no parents) are ready at time t. Other nodes will not be ready until all their parents are assigned a time and a processor.

SortedList list = new List(sorted by level strategy precedence);

Partition p = new Partition(n);

int[] processors = new int[n];

for (i=0; i<n; i++) processors[i] = m; // available processors

for (all tasks s) s.waiting = 0;

for (all tasks s) for (all children c of s) ++c.waiting;

for (all tasks s)

if (s.waiting==0) { s.ready = 1; list.insert(s); }

while (!list.isEmpty)

s = list.remove; // gets highest precedence ready task

t = p.find(s.ready); s.scheduleTime = t;

if (--processors[t-1]==0) union(find(t+1),t); // parent of t+1 must be new root

for (all children c of s) if (--c.waiting==0) c.ready = t+1; // ready after last parent run

Level Strategy – DAG with Unit Time
1.
Assign L(T) = 1, for an arb. leaf task T

2.
Let labels 1, …, k-1 be assigned. For each task T such that

{L(T’) is defined for all T’ in Successor(T)}

Let N(T) be decreasing sequence of set members in

{S(T’) | T’ is in S(T)}

Choose T* with least N(T*).
Define L(T*) = K.

This is an order n2 labeling algorithm. Scheduling with it involves n union / find style operations. We have previously shown such operations to be implementable in lg*n time.

Theorem: The ratio of Level Strategy schedule to optimal schedule for unit execution and dag precedence is 2-2/m.

Corollary: Level Strategy is optimal for unit execution, m=2, dag precedence.

Quiz#2
Topics and Promises
COP3530, Fall 1999

Topics:

1.
Sorting
2.
Relational Data Model

Relational database is a collection of tables, called relations
Each row is called a tuple and is an instance of the relation

Each column is a labeled attribute; Set of attribute names is scheme of the relation

Each relation has a key, which is a set of attributes that uniquely identifies each row

Data Structures for Relations:

BST – sorted by key; Hash, as function of key; List (linked or array) of tuples

Using keys to navigate among relations

Relational algebra – The operators:


Union

Intersection
–
Difference

C (R)
Selection
(B1,…Bn (R)
Projection

R (Ai=Bj S
Join
R (S
Natural Join

Complexity Analyses of Implementing Relational Operators

Query optimization – Algebraic Properties of Relational Operators

3.
Amortized Union / Find on equivalence relations

Parent pointers leading up to a canonical element of the equivalence class

Constant time Union algorithm; Linear time Find algorithm

Constant time Union algorithm using weights; lg time Find algorithm

Constant time Union algorithm; lg* time path compression Find

4.
Graph data model – terminology, representation schemes

Topological sort

Union/Find partitioning to compute connected components.

Spanning Trees and Greedy Algorithms – Kruskal’s and Prim’s Algorithms

Basic algorithm for Depth First Search Tree
Classification of arcs in depth first search tree T created from graph G

Tree arcs ,Forward arcs, Backward arcs, Cross arcs
Depth First Search Forest – Postorder numberings during DFS

Algorithms Based on Depth First Search

Finding cycles in a directed graph; Topological sort; Reachability problem;

Connected components; Reflexive transitive closure
5.
Connectivity Problems in Graphs
Reflexive Transitive Closure by Warshall’s Algorithm
Use Principle of Optimality – intermediate (pivot) nodes

Use a Boolean Adjacency Matrix – O(N3) time

Comparison to reflexive transitive closure by depth first search

All Shortest Paths Problem by Floyd’s Algorithm
Use Principle of Optimality – intermediate (pivot) nodes

Use an Adjacency Matrix to represent weighted arcs – O(N3) time

Shortest Path Problem by Dijkstra’s Algorithm
Greedy based on closest unsettled node

Use Adjacency Lists for weighted arcs and POT for unsettled – O(M lg N) time

O(N M lg N) time extension for all shortest paths

Or use Adjacency Matrix for arcs and List for unsettled – O(N2) time

6.
Algorithm Based on Depth First Search
Finding cycles in a directed graph

Topological sort; Reachability problem; Connected components

Comparison to reflexive transitive closure by Warshall's

7.
Scheduling
Basic definition and complexity; anomolies

Critical path scheduling; Unit Execution Tree and DA
NP, NP-complete (conceptual)

Promises:

1.
I will give you a set of relations and ask you questions about the results of operations (union, intersection, difference, projection, selection and join.) There will be no proofs.

2.
I will ask you to apply rules for query optimization – you do not need to memorize the rules, but you must understand them.

3.
I will have you demonstrate changes to trees used in union/find algorithms. You will not need to write out any algorithms.

4.
I will ask you to apply various algorithms to graphs. I will also ask you questions that test your knowledge of the complexities and sources of complexities in the various graph algorithms that we have discussed. Be sure to know union/find based connected components; Kruskal’s; Prim’s; DFS; DFS based acyclic, sort, reachability, connected components, reflexive-transitive closure, topological sort; Warshall’s; Floyd’s; and Dijkstra’s (both).

5.
I'll probably also give you another ADT style question, just like in Quiz#1 and Exam#1.

COP 3530 – CS3
Fall 1999
Quiz # 2
Name:__Sample Quiz Key_________

15
1.
Consider the following trees being used to represent equivalence classes (partitions) over the set {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. Show the resulting combination of the first two trees if we do a union(2,3). Now show the final tree the results after we do a union(6,16). In each case, assume that the union starts with two finds, each of which uses path compression and that the unions use tree heights to minimize path lengths.

[image: image91.wmf]4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

[image: image92.wmf]4

6

2

8

5

1

3

7

9

14

[image: image93.wmf]4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

Define the function lg* N (also called log2*(N)).

lg* N is the least integer k such that k repeated lg application produced a value (1
That is, lg lg lg … lg N (1, where there are k lg’s in sequence
What is the value of lg* 216 ?
4 since lg 216 = 16, lg 16 = 4, lg 4 =2, lg 2 =1.
How does lg* N relate to the management of partition trees by the above algorithms?

This is the expected depth of a tree when it contains N elements.
10
2.
The following table shows algorithmic costs for naive approaches (ones not involving sorts or indices) to relational operations. Fill in the columns associated with the use of indices. You may assume constant time index lookup via a hash table. Assume |R| = n, |S| = m, t = n+m, and |Result| = k
	
	Naive
	Indexed

	R  S
	nm
	n+m = t

	R – S
	nm
	n

	C (R)
	n
	k

	(– (R)
	n^2
	n

	R (S
	nm
	k+n or k+m

10
3.
An undirected graph can be checked to see if it’s connected by using a union/find algorithm, similar to Kruskal’s tree spanning algorithm (see #7), or by employing depth first search. In words, describe how the depth first search algorithm solves this problem. You may assume a graph G with N nodes and E edges.

This algorithms marks all nodes as unvisited. It then selects one node that serves as the basis for finding all those connected to this one. If that’s the set of all nodes, then the graph is connected. The chosen node is marked visited. Each of its unvisited nodes are treated in the same manner. Each node is ignored after it has been marked visited. This approach will eventually visit all nodes that are connected to the first. Thus, the graph is connected if all nodes are marked as visited after the depth first search completes.

What is the time complexity of the depth first search algorithm?

O(max(N,E))
What is the time complexity of the union/find algorithm?

O(max(N,E) lg* N)
Which is preferable and why?

The depth first search algorithm always performs better.
15
4.
Consider the following relations DIRECTORS, BORROWERS and LOCATIONS. I have specified several tables, each unfilled and each labelled with a single operation that is used to define its tuples. Fill in these tables. I have allowed for at least as many entries (generally more) as are needed.

DIRECTORS

	NAME
	BANK

	Arco, M.
	CENTRUST

	Arco, M.
	SUN

	Garcia, R.
	BARNETT

	Jones, A.
	BARNETT

	Sim, R.
	BARNETT

	Smith, M.
	SUN

	Torey, P.
	CENTRUST

BORROWERS

	NAME
	BANK

	Arco, M.
	SUN

	Garcia, R.
	BARNETT

	Jones, A.
	SUN

	Torey, P.
	CENTRUST

	Trent, C.
	CENTRUST

LOCATIONS

	BANK
	STATE

	BARNETT
	FL

	CENTRUST
	FL

	CENTRUST
	NC

	SUN
	FL

	SUN
	GA

DIRECTORS  BORROWERS

	NAME
	BANK

	Arco, M.
	CENTRUST

	Arco, M.
	SUN

	Garcia, R.
	BARNETT

	Jones, A.
	BARNETT

	Jones, A.
	SUN

	Sim, R.
	BARNETT

	Smith, M.
	SUN

	Torey, P.
	CENTRUST

	Trent, C.
	CENTRUST

	
	

	
	

	
	

DIRECTORS  BORROWERS

	NAME
	BANK

	Arco, M.
	SUN

	Garcia, R.
	BARNETT

	Torey, P.
	CENTRUST

	
	

	
	

	
	

	
	

BANK=SUN (BORROWERS)

	NAME
	BANK

	Arco, M.
	SUN

	Jones, A.
	SUN

	
	

	
	

	
	

(STATE (LOCATIONS)

	STATE

	FL

	GA

	NC

	

	

DIRECTORS (LOCATIONS

	NAME
	BANK
	STATE

	Arco, M.
	CENTRUST
	FL

	Arco, M.
	CENTRUST
	NC

	Arco, M.
	SUN
	FL

	Arco, M.
	SUN
	GA

	Garcia, R.
	BARNETT
	FL

	Jones, A.
	BARNETT
	FL

	Sim, R.
	BARNETT
	FL

	Smith, M.
	SUN
	FL

	Smith, M.
	SUN
	GA

	Torey, P.
	CENTRUST
	FL

	Torey, P.
	CENTRUST
	NC

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

10
5.
Assume we wish to issue the following query :

NAME (STATE=FL((DIRECTORS  BORROWERS) (LOCATIONS)))

Present the tree associated with this query expression.

[image: image94.wmf]p

STATE=FL

s

NAME

 Ç

¥

LOCATIONS

DIRECTORS

BORROWERS

Now show how the following algebraic rules may be applied to optimize the query by pushing the projection and selection operators as low as possible. Present the new expression and its corresponding tree
Selection Pushing below Joins
(C (R (S))  (C (R) (S) , provided all attributes of C are in R

(C (R (S))  (R (C (S)) , provided all attributes of C are in S

Projection Pushing below Unions
(L (R  S))  (L (R)  L (S))

Limited Projection Pushing below Joins
(L (R (A=B S))  (L (M (R) (A=B N (S))) , where

1) M consists of attributes of L from R followed by attribute A, if it is not in L,

2) N consists of attributes of L from S followed by attribute B, if it is not in L.

Projection Identity
L (R)  R , when L is all the attributes of R

NAME ((DIRECTORS  BORROWERS) (BANK (STATE=FL(LOCATIONS)))

[image: image95.wmf]p

STATE=FL

s

NAME

 Ç

¥

LOCATIONS

DIRECTORS

BORROWERS

p

BANK

10
6.
The two implementations of Dijkstra’s shortest paths algorithm have incomparable complexity, even though each is based on the same greedy approach involving selected and unselected nodes.

a.)
What is the greedy basis for selecting a next node in Dijkstra’s algorithm?
Chose the unselected node whose currently computed shortest distance from source is minimum among all unselected nodes.

b.)
One implementation leads to a complexity of m lg n, where n is the number of nodes in the graph and m is the maximum of the number of nodes and edges. What operation(s) lead to the lg n term?
The heap maintenance operation (bubbleDown and BubbleUp) needed to ensure the minimum is at the heap’s top costs lg n each iteration
What operation(s) lead to the m term?
Picking the next node and going through its adjacency list introduces a term that is bounded by the worst of n and the number of edges.

c.)
The other implementation leads to a complexity of n2, where n is the number of nodes in the graph. Why does this approach use a linear list rather than some fancier one to support its selection of the best node? Be explicit.
Because the heap maintenance required in this algorithm forces a complete reheapify each pass. Heapify costs O(n) time, with a constant greater than that of the simple linear search that we are trying to avoid.

d.)
Under which circumstances is the n2 implementation preferable to the m lg n one?
When the graph is totally connected,then m is n2, and so the m lg n technique degenerates to n2 lg n, a definite loser to n2.

10
7.
Consider the following implementation of Kruskal’s algorithm.

List kruskalMinSpan (int n, List edges) {

p = new Partition(n);

spanningEdges = new List();

sort(edges); // sorted low to high by cost

Iterator edgeIterator = edges.iterator();

while (edgeIterator.hasNext()) {

edge = (Edge) edgeIterator.next();

int p1 = p.find(edge.node1); int p2 = p.find(edge.node2);

if (p1 != p2) {

p.union(edge.node1, edge.node2);

spanningEdges.add(edge);

}

}

return spanningEdges;

}
What are the complexities of the bolded operations, assuming N nodes and E edges?

sort(edges)
O(E lg N) or O(E lg E)
p.find(edge.node1)
O(lg* N)
p.union(edge.node1, edge.node2)
O(1) or O(lg* N), if there is no memory
spanningEdges.add(edge);
O(1)
What is the overall complexity of this algorithm?

N + O(E lg N)+ O(E lg* N) = O(N + E lg N) = O(max(N,E) lg N)

8.
Consider the simple scheduling problem where we have a set of independent tasks running on a fixed number of processors, and we wish to minimize the time at which the last task completes.

4

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs and execution times onto four processors? Answer by showing a Gantt chart for the resulting schedule (write the task ID into each time/processor slot used.)

(T1,7)
(T2,7)
(T3,3)
(T4,3)
(T5,2)
(T6,1)
(T7,4)

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	T1
	T1
	T1
	T1
	T1
	T1
	T1
	
	
	
	
	
	
	
	
	

	T2
	T2
	T2
	T2
	T2
	T2
	T2
	
	
	
	
	
	
	
	
	

	T3
	T3
	T3
	T5
	T5
	
	
	
	
	
	
	
	
	
	
	

	T4
	T4
	T4
	T6
	T7
	T7
	T7
	T7
	
	
	
	
	
	
	
	

4

Now show what would happen if the times were sorted from longest to shortest.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	T1
	T1
	T1
	T1
	T1
	T1
	T1
	
	
	
	
	
	
	
	
	

	T2
	T2
	T2
	T2
	T2
	T2
	T2
	
	
	
	
	
	
	
	
	

	T7
	T7
	T7
	T7
	T5
	T5
	T6
	
	
	
	
	
	
	
	
	

	T3
	T3
	T3
	T4
	T4
	T4
	
	
	
	
	
	
	
	
	
	

COP 3530 – CS3 Fall 1999
Quiz#2
Name:
Key

14
1.
Consider an Abstract Data Type, WaitingQueue (WQ), defined by the following protocol

public WQ() – constructs the WQ with an empty state (no tasks are waiting)
public void put(Task t, int p) – adds a new task, t, with priority, p (p(0), to the WQ. There can be many tasks of the same priority.

public int max() – returns the priority of the highest priority task in the WQ, -1 if there are none.

public boolean match(int p) – returns true if there is a task in the WQ whose priority is at least as large as p.

public Task deleteHighest() – returns a task in the WQ whose priority is the highest. Returns null if there are no tasks in the WQ. The returned task is deleted from the WQ.

public boolean perfectMatch(int p) – returns true if there is a task in the WQ of priority p.

public int closestMatch(int p) – returns priority of a task in WQ that is as close as possible to p. Returns -1 if no tasks in the WQ.

public Task deleteClosest(int p) – returns a task in the WQ whose priority is as close as possible to p. Returns null if there are no tasks in the WQ. The returned task is deleted from the WQ.

Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure.

Fill in the order of the average complexities in terms of N, the number of elements being stored, of each of the last seven services provided for the WQ ADT, given the following two approaches to implementation. In all cases, assume that individual sizes can be compared in constant time and that you are concerned with expected, not worst-case performance.

All orderings are based on task priorities, and duplicate priorities are allowed.

i.)
The state of the WQ is represented in a Max Heap implementation of a Balanced Priority Ordered Tree (BPOT). You may not assume that the heap structure stores any state information other than that provided by the normal heap protocol, plus the ability to treat the heap as a array for purposes of direct access to any element.

ii.)
The state of the WQ is represented by a Sorted List (SL). Assume a simple array data structure, sorted low to high, storing data in positions 0 to N-1.

	
	BPOT
	SL

	put
	lgN
	N

	max
	1
	1

	match
	1
	1

	deleteHighest
	lgN
	1

	perfectMatch
	N
	lgN

	closestMatch
	N
	lgN

	deleteClosest
	N
	N

2.
The text shows that the best case performance of Quick Sort is O(N lg N) and its worst case performance is O(N2). The text then details how we can show that the average case performance of Quick Sort is described by the recurrence.

T(N) = ((N+1)/N) T(N-1) + K, where K(1

with boundary conditions T(0) = T(1) =1.

To find a closed form for T(N), we might be tempted to treat (N+1)/N as a small constant. You must argue why this won't work by considering the two possibilities:

3
a)
Argue why treating (N+1)/N as 1, since it approaches 1, as N approaches infinity, leads to a contradiction.

The recurrence becomes T(N) = T(N-1) + K from which we can show that T(N) = O(N)

BUT, the best case for QuickSort is NlgN. Proving that the average is better than the best case is a contradiction.

3
b)
Argue why treating (N+1)/N as 1+(, where (>0 is arbitrarily small, also leads to a contradiction.

The recurrence becomes T(N) = (1+()T(N-1) + K from which we can show that T(N) = O((1+()N).

BUT, the worst case for QuickSort is N2. Proving that the average is worse than the worst case is a contradiction.

10
3.
The following table has entries for the maximum and minimum result sizes and algorithmic costs for approaches to relational operations. Fill in the columns. Assume |R| = n, |S| = m, t = n+m, and |Result| = k. Also assume that the result is a new table, not a change to one of the input tables. Notes: You cannot fill k in to the size columns. You may assume constant time index lookup via a hash table.

	
	Max Size
	Min Size
	Naive
	Post-Sort
	Indexed

	R  S
	t or n+m
	max(n,m)
	n (m
	t lg t
	t or n+m

	C (R)
	n
	0
	n
	n/a
	k or n

	(– (R)
	n
	1
	n2
	n lg n
	n

	R (S
	n (m
	0
	n (m
	k + t lg t
	k+n or k+m

4.
Consider the following relations DIRECTORS, BORROWERS , LOCATIONS and BRANCHES.

DIRECTORS

	DNAME
	BANK

	Arco, M.
	CENTRUST

	Barry, K.
	SUN

	Garcia, R.
	BARNETT

	Jones, A.
	HUNTINGTON

	Sim, R.
	BARNETT

	Sim, R.
	UNION

	Torey, P.
	CENTRUST

CEOS

	CNAME
	BANK

	Arco, M.
	SUN

	Garcia, R.
	BARNETT

	Jones, A.
	HUNTINGTON

	Torey, P.
	UNION

	Trent, C.
	CENTRUST

LOCATIONS

	BANK
	STATE

	BARNETT
	FL

	CENTRUST
	SC

	CENTRUST
	NC

	HUNTINGTON
	FL

	SUN
	FL

	SUN
	GA

	UNION
	GA

ACCESS

	BANK
	TYPE

	BARNETT
	ATM

	CENTRUST
	ATM

	CENTRUST
	WEB

	HUNTINGTON
	ATM

	HUNTINGTON
	WEB

	SUN
	ATM

	UNION
	ATM

Write relational expressions for each of the following queries, and show the tables that result from executing these queries.

4
a)
In what states do we have banks that provide web access?

(STATE(LOCATIONS ((TYPE=WEB(ACCESS))

	FL

	NC

	SC

4
b)
Who are the CEOs of the banks on which "Sim, R." is a director??

(CNAME((SNAME == "Sim, R. (DIRECTORS) ((CEOS))
	Garcia, R.

	Torey, P.

6
5.
Consider the following trees being used to represent equivalence classes (partitions) over the set {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. Show the resulting combination of the first two trees if we do a union(6,9). Now show the final tree that results after we do a union(6,16) – note this second operation is performed on the trees existing after the first union. In each case, assume that the union starts with two finds, each of which uses path compression, and that the unions use tree heights to minimize path lengths.

[image: image96.wmf]4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

[image: image97.wmf]

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

[image: image98.wmf]

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

Assuming that we manage partition trees in the manner above, what is the expected height of trees containing the following number of nodes, under the assumptions of no path compression and then path compression?

Number of Nodes
Expected Height Using
Expected Height Using

No Path Compression
Path Compression

1

4 nodes?
_______2_________
________2________
1

16 nodes?
_______4_________
________3________
1

65,536 = 216 nodes?
_______16________
________4________

6.
Depth first search is the basis for many algorithms concerning graphs, both directed and undirected. Most of these algorithms start with a depth first search that provides a post-order numbering of all nodes.

2

Assuming a graph with n nodes , e edges and M=max(n,e), what is the complexity of assigning post-order numbers to the nodes of a graph?
M

3

How may the post-order numbers be used to determine the existence of a cycle? In answering this, assume post[i] is the post-order number of node i and (i,j) denotes an arc (directed edge) from node i to node j.
if there exists (i,j) such that post[i] (post[j]

2

How can a depth first search determine if an undirected graph is connected?
Choose any node as start – if all are marked after a depth first search from the randomly chosen node then the graph is connected

7.
The second implementations of Dijkstra’s shortest paths algorithm has an algorithmic structure that looks like

1. settled := [FirstCity]; unsettled = [succ(FirstCity) .. LastCity];

2. for v in unsettled do short[v] := dist[FirstCity,v];

3. structure short to suit our needs; // this may require short to be a pair (distance, node)

4. while unsettled <> [] do begin

5. find u in unsettled for which short[u] is shortest;

6. settled := settled + [u]; unsettled := unsettled - [u];

7. restructure short if necessary;

8. for v in unsettled do short[v] := min(short[v], short[u] + dist[u,v])

9. restructure short if necessary;

10. end;

Assume n nodes (cities), e edges and M=max(n,e) where appropriate.

5
a)
What would be the cost of running this algorithm if we maintained short as a sorted list in ascending order? Explain how you arrived at your conclusion by indicating the contributions of the bolded activities in the algorithm.

2.
n

3.
n lg n

iterate n times

5.
1

7.
1

8.
n

9.
n lg n

n + n lg n + n2 lg n = O(n2 lg n)

5
b)
What would be the cost of running this algorithm if we maintained short in a min heap data structure? Explain how you arrived at your conclusion by indicating the contributions of the bolded activities in the algorithm.

2.
n

3.
n

iterate n times

5.
1

7.
lg n or none

either e lg n total bubbleUps or

8.
n

9.
n

n + n2 = O(n2) or n + n lg n + e lg n = O(M lg n)

8.
Warshall’s Algorithm is presented below.

public void warshallsAlgorithm() {

//for each pivot try all pairs of nodes

for (int pivot = 0; pivot < N; pivot++)

for (int v = 0; v < N; v++)

for (int w = 0; w < N; w++)

if (v != w)

connectedMatrix[v][w] = connectedMatrix[v][w] ||

(connectedMatrix[v][pivot] && connectedMatrix[pivot][w]);

}

2
Assuming n nodes and e edges and M=max(n,e), what is the overall complexity of this algorithm? n3

1
Is this a Greedy or a Dynamic Programming algorithm? Dynamic Programming

3
An alternative algorithm is to run dfs n times. What is cost of this dfs approach, and when is it better than Warshall's? Be explicit.

n (M

It is better if M < O(n2). That is, this is better when the matrices are sparse, otherwise it's a toss-up.

9.
Consider the simple scheduling problem where we have a set of independent tasks running on a fixed number of processors, and we wish to minimize the time at which the last task completes.

3

How would a list (first fit, no preemption) strategy schedule tasks with the following IDs and execution times onto three processors? Answer by showing a Gantt chart for the resulting schedule (write the task ID into each time/processor slot used.)

(T1,5)
(T2,7)
(T3,3)
(T4,4)
(T5,9)
(T6,7)
(T7,1)
(T8,3)

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	1
	1
	1
	1
	1
	5
	5
	5
	5
	5
	5
	5
	5
	5
	
	

	2
	2
	2
	2
	2
	2
	2
	6
	6
	6
	6
	6
	6
	6
	
	

	3
	3
	3
	4
	4
	4
	4
	7
	8
	8
	8
	
	
	
	
	

3

Now show what would happen if the times were sorted from longest to shortest.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	5
	5
	5
	5
	5
	5
	5
	5
	5
	3
	3
	3
	7
	
	
	

	2
	2
	2
	2
	2
	2
	2
	1
	1
	1
	1
	1
	
	
	
	

	6
	6
	6
	6
	6
	6
	6
	4
	4
	4
	4
	8
	8
	8
	
	

3

Now show an optimal (quickest time to complete all tasks) schedule.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	2
	2
	7
	
	
	

	5
	5
	5
	5
	5
	5
	5
	5
	5
	4
	4
	4
	4
	
	
	

	3
	3
	3
	6
	6
	6
	6
	6
	6
	6
	8
	8
	8
	
	
	

Context Free Grammars
A Context free grammar is a 4-tuple, G = (N, , S, P), where

N = a finite set of non-terminal symbols (they help produce strings)

= a finite set of terminal symbols (these are the symbols in strings we produce)

S is a symbol in N, called the start symbol

P is a set of rewriting rules, each of which is of the form A ((,
where A is a non-terminal and (is a string over ( (N)+
Let (A(be some word over ( (N)+ containing the non-terminal A, and let A ((be some rule in P, then (A(((((, meaning that (A(can be rewritten as (((by a single application of a rule in P which replaces A by the right-hand side of one its production. We extend the meaning of (to its reflexitive transitive closure (* in order to define the more general concept of a string being rewritten via 0 or more applications of productions.

A grammar G generates the language L(G) = {w | w ( and S (* w }

For example, the following grammar G=({S},{a,b},S,P) generates the language {anbn |n>0}

S (
a S b | ab

Expressions Languages and Ambiguity
The following grammar G=({E},{x,+,-,*,/,(,)},S,P) generates simple expressions

E (
E + E | E – E | E * E | E / E | (E) | x

This grammar is ambiguous, in that it provides distinct parses of strings like

x + x * x

Rewrite sequence 1: E (E + E (E + E * E (… (x + x * x

Rewrite sequence 1: E (E * E (E + E * E (… (x + x * x

The first rewrite sequence leads to a parse tree in which the second and third x's are grouped by the times, and this term is then added to the first x.

The first rewrite sequence leads to a parse tree in which the first and second x's are grouped by the add, and this term is then multiplied times the third x.

The first interpretation is normal parsing, but this grammar does not indicate such a parse. Ambiguity is bad in programming languages, even though it's the basis for jokes (and insults) in natural languages.

It can be shown that the problem to decide whether or not a context free grammar is ambiguous is an inherently undecidable problem.

Chomsky Normal Form Grammars
A Chomsky Normal Form (CNF) grammar is a context free grammar in which the rules are restricted to just two kinds

A (a, where a is a terminal

A (BC where B and C are both non-terminals.

It can be proved that all context free languages (those genereated by context free grammars) can also be generated by CNF grammars.

Here is a CNF for {anbn |n>0}

S (
A T | A B

T (
S B

A (
a

B (
b

Cocke-Kasami-Younger (CKY)
Deciding if a string is in the language generated by some context free grammar is a decidable, but on the surface very hard problem. In fact, early parsers that uses a trial and error approach ran in exponential time. In the mid 1960s, this problem was shown to be decidable in O(N3) time. The technique is a dynamic programming approach known as CKY, after its inventors Cocke, Kasami and Younger. It applies to CNF grammars.

The basic idea is that a string of length 1 can only be generated by a single rule of the form A (a, so we can check the simplest words easily. A string of the length k, k>1, must be generated by a sequence of rules starting with one of the form A (BC. Clearly, the B will generate a left substring, and the C will generate the remaining right part of the word. this allows us to stitch together what we may have learned about shorter strings to learn about longer strings. The problem is, how much of the word is produced in the left part, and how much in the right part. CKY gives us a controlled way to try all possible splits.

CKY Process
Given a CNF grammar G = (N, , S, P), and a string a1 a2 … an of length n, we create a matrix with n rows and n columns. The labels on the columns are the characters in the string, that is ai is label over the i-th column. The rows are labeled 1 through n, starting at the top. For instance a string a1 a2 … a6 leads to a matrix initiazes as

	
	a1
	a2
	a3
	a4
	a5
	a6

	1
	
	
	
	
	
	

	2
	
	
	
	
	
	

	3
	
	
	
	
	
	

	4
	
	
	
	
	
	

	5
	
	
	
	
	
	

	6
	
	
	
	
	
	

Note that this is an upper triangular matrix.
Our goal is to fill in the i,j-th slot, j (n+1-I with all the non-terminals from which we can derive the string aj aj+1 … aj+i-1 , that is the string of length i, starting at position j. Of course, the string in question is in the language if the start symbol S appears in slot (n,1).

CKY Example #1
It's easy to see how we can fill in the slots in row 1, since slot (1,j) is just the non-terminals, A, having a rule A (aj. Slot (i,j) gets symbol A if there is a rule A (BC, where B is in slot (k,j), C is in (i-k,j+k). Think about it!!!

Present the CKY recognition matrix for the string a a b a b b assuming the grammar

S (
A T | B U

T (
b | B S | A V
V (
T T

U (
a | A S | B W
W (
U U

A (
a
B (
b

	
	a
	a
	b
	a
	b
	b

	1
	A,U
	A,U
	B,T
	A,U
	B,T
	B,T

	2
	W
	S
	S
	S
	V
	

	3
	U
	U
	T
	T
	
	

	4
	W
	S
	V
	
	
	

	5
	U
	T
	
	
	
	

	6
	S
	
	
	
	
	

The string can be generated from S, since S appears in the slot associated with a string of length 6, starting at the first position.

CKY Example #2
Present the CKY recognition matrix for the string (x + x) * x assuming the grammar

S (
S T | x | LU

T (
P S | N S | M S | D S

U (
S R
P (

+

L (
(
N (
-

R (
)
M (
*

D (
/

	
	(
	x
	+
	x
)
	*
	x

	1
	L
	S
	P
	S
	R
	M
	S

	2
	
	
	T
	U
	
	T
	

	3
	
	S
	
	
	
	
	

	4
	
	U
	
	
	
	
	

	5
	S
	
	
	
	
	
	

	6
	
	
	
	
	
	
	

	7
	S
	
	
	
	
	
	

Final Exam
Topics and Promises
COP3530, Fall 1999

Topics:

1.
Quiz#2 topics PLUS
2.
Relational Data Model

Query optimization – Algebraic Properties of Relational Operators

3.
LIS and LCS
4.
Graph data model – terminology, representation schemes

Strongly connected subcomponents

5.
Scheduling
Schedule in the face of precedence graphs

Critical path scheduling; Unit Execution Tree and DA
NP, NP-complete (conceptual)

6.
CKY
Applying algorithm
Additional Promises:

1.
I will ask you to apply rules for query optimization – you do not need to memorize the rules, but you must understand them.

2.
I will give you a scheduling problem with a precedence graph

3.
I will give you a CKY matrix to fill in.

L M M

© C. E. Hughes, UCF Computer Science
–
 –
COP 3530 Fall ‘99

_980256428.doc

3

4

2

9

1

7

_999853294.doc
[image: image1.wmf]

8

4

2

5

7

3�

1

6

_999890357.doc

2

3

4

6

7

14

11

9

_1000667974.doc
[image: image1.wmf]

9

4

2

5

7

3�

1

6

_1000936029.doc
[image: image1.wmf][image: image2.wmf]

9

4

2

5

8

3�

7�

1

6

_1005412553.doc

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

_1005412776.doc

4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

_1000935827.doc
[image: image1.wmf][image: image2.wmf]

9

4

2

5

7

3�

8�

1

6

_999892091.doc

14

2

13

11

10

6

12

17

_1000121228.doc
[image: image1.wmf]

18

4

2

5

7

23�

11

6

_999892090.doc

14

12

2

17

10

6

13

11

_999890164.doc

2

6

14

3

9

4

11

7

_999890306.doc

2

3

4

6

7

9

11

14

_999890356.doc

2

3

4

6

7

9

14

11

_999890226.doc

2

3

6

4

14

7

11

9

_999890059.doc

2

14

6

9

3

7

11

4

_999890163.doc

2

6

3

14

4

9

11

7

_999855035.doc

+

– –

+ +

/

A

E

C

*

D

_998947557.unknown

_998949054.unknown

_999851299.doc

2

14

6

9

3

7

4

11

_999851363.doc

_998949082.unknown

_998947685.unknown

_980256617.doc

2

3

1

4

7

9

_980256869.doc

1

2

3

4

7

9

_985031173.doc



STATE=FL



NAME



(

LOCATIONS

DIRECTORS

BORROWERS

_985031267.doc



STATE=FL



NAME



(

LOCATIONS

DIRECTORS

BORROWERS



BANK

_980256829.doc

2

1

3

4

7

9

_980256473.doc

3

2

4

1

9

7

_978199461.doc

+

–

~

2

/

5

2

20

*

3

_978630350.unknown

_978705834.doc



Name ="C.Brown"



Room

(

CR

CDH

SNAP

CSG

(

(

Day="M" and Hour="9AM"



_978706051.doc



Name ="C.Brown"



Room

(

CR

CDH

SNAP

CSG

(

(

Day="M" and Hour="9AM"





Course



Course

_979502135.doc

3

4

2

9

7

1

_980255637.doc

19

2

22

10

20

30

14

1

_980255874.doc

20

10

2

30

19

14

22

1

_979505298.doc

…

right

deque

el

next

el

next

el

next

element

element

element

_978706077.doc



Name ="C.Brown"



Room

(

CR

CDH

SNAP

CSG

(

(

Day="M" and Hour="9AM"





Course



Course



Course,

StudentId



StudentId

_978706105.doc



Name ="C.Brown"



Room

(

CR

CDH

SNAP

CSG

(

(

Day="M" and Hour="9AM"





Course



Course



StudentId

_978705989.doc



Name ="C.Brown"



Room

CR

CDH

SNAP

CSG

(

(

Day="M" and Hour="9AM"



(

_978706024.doc



Name ="C.Brown"



Room

(

CR

CDH

SNAP

CSG

(

(

Day="M" and Hour="9AM"





Course

_978705911.doc



Name ="C.Brown"



Room

(

CR

CDH

SNAP

CSG

(

(

Day="M" and Hour="9AM"



_978705772.doc



Name ="C.Brown"

 and Day="M" and Hour="9AM"



Room

(

CR

CDH

SNAP

CSG

(

(

_978705809.doc



Name ="C.Brown"

 and Day="M" and Hour="9AM"



Room

(

CR

CDH

SNAP

CSG

(

(

_978630451.unknown

_978607115.unknown

_978608920.unknown

_978606752.unknown

_978203614.doc

f

i

t

o

r

s

h

i

e

i

s

n

g

s

m

e

n

y

_943736033

_977498046.bin

_978197416.doc

+

–

~

B

/

A

E

C

*

D

_954099814.doc
[image: image1.bmp]

T1

1

T6

3

T5

3

T4

3

T2

2

T3

4

T1

T4

T2

T3

T5

T6

List Schedule with L = {T1,T2,T3,T4,T5,T6}

T1

T3

T5

T6

T1

T3

T5

T6

T4

T2

T4

T2

T3

Non-Preemptive, Delays Allowed

Preemptive

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

_956528361.doc
[image: image1.png](((((

[image: image2.png]

_954098112.unknown

_954098113.unknown

_943736030

_943736031

_943736027

_943736028

_943736026

_943736024

