C. E. Hughes, UCF Computer Science
–
 –
COP 3530 Spring ‘99

COP 3530
Fall 1999
Diagnostic Exam#1 Key
Name:_____________________

1. The algorithmic (programming) techniques of recursion and iteration can be related to the mathematical proof technique of induction in a manner that allows inductive proofs of correctness and run-time complexity. Show this relationship by proving that the first of the following two code segments correctly computes N2, for N(0, and that the second has run time complexity 2N–1, N(1. In this latter case, we base complexity on the number of recursive calls made.

function sq(N : integer) : integer;

begin

if N<=0 then sq := 0

else sq := 2*N – 1 + sq(N-1)

end; { sq }
HINT: Prove S(N): sq(N) = N2, N(0
Basis: S(0): sq(0) = 0 by definition of function and fact that 0 <= 0. But, 02 = 0 and thus sq(0) = 02 (
IH: Assume, for some N>0, that S(k), for all k <N.

IS: Show S(N). sq(N) = 2*N – 1 + sq(N – 1) by definition of function and fact that N>0.

But, sq(N-1) = (N – 1)2 by inductive hypothesis.

Hence sq(N)= 2* N – 1 + N2 – 2*N + 1 = N2 (

procedure Move (n:integer; X, Y, Z:char);

begin

if n = 1 then writeln('Move ', X, ' to ', Y)

else begin

Move (n-1, X, Z, Y);

writeln('Move ', X, ' to ', Y);

Move (n-1, Z, Y, X)

end
end; { Move }
HINT: Prove S(N): T(N) = 2N–1, N(1, where T(1) = 1; T(N) = 2*T(N–1) + 1, N>1.

Basis: S(1): T(1) = 1 by definition of function and fact that 1 = 1. For this case, there is only the initial call to Move, with no subsequent recursive calls.(
IH: Assume, for some N>1, that S(k), for all k <N.

IS: Show S(N). T(N) = 2*T(N–1) + 1 by definition of function and fact that N>1. For this case we recursively call Move twice, each time with its first parameter set to N–1.

But, T(N–1) = 2N-1–1 by inductive hypothesis.

Hence T(N)= 2*(2N-1–1) + 1 = 2N – 2 + 1 = 2N – 1 (

2.
A dictionary is an ADT that responds to the messages insert(newWord), lookup(oldWord) and delete(oldWord). There are many competing abstract implementations for a dictionary, three of which are a sorted linear list (not a linked list), a balanced binary search tree and a trie. Focusing on the lookup only, I have given informal algorithms and analyses of the costs of looking up a word. Discuss the pros and cons of each abstract implementation. Be sure to specify the complexity of the other operations (insert and delete) for each implementation.

lookup
sorted linear list
Start in the middle of the list. If the word is found, report success. If not, and the new word is less than the one in the middle, ignore the bottom half, focusing on the top half of list only. Otherwise, ignore the top half, focusing on the bottom only. If you run out of words in the list, report failure. The search takes O(logN) operations.
balanced binary search tree
Traverse the tree, starting at its root. Move left any time the word being looked up is less than that in the node you’re visiting; move right if it’s greater; stop the search if it’s equal or there are no more nodes. If found, report success. If out of nodes, report failure. The search takes O(logN) operations.
trie
Traverse the tree, starting at the left child of its root. Check one character at a time, starting at the first. If the character does not match that in the current node, move to its right sibling. If no right sibling exists, report failure. If the character matches that in the current node and all characters have been checked, report success. Otherwise, move down to the left child of this node, focusing on the next letter of the word being looked up. The search takes O(K) operations, where there are K characters in the word.

insert
sorted linear list
 The problem of inserting an item involves finding where it belongs and then moving all higher indexed items out of the way to make room. In general this takes O(N) operations We could, of course, find its place using a O(logN) search as above, but then we still need to move items to make room. The logN search can help if duplicates are not allowed, and we find the item is already in the table, but that should be rare.
balanced binary search tree
We can use the O(logN) search to find where it belongs, and add it as a new leaf. This might imbalance the tree, but using the AVL balancing property, we can rebalance in O(1) time.
trie
We can use the O(K) lookup algorithm from above to find where it belongs. We then need only add a marker, if the new word is a prefix of some existing word, or add the remaining letter using parent child relations, and then mark the new end.

delete
sorted linear list
We can use the O(logN) lookup to find the word. If it's in the list, we have to remove it and compress the list, an O(N) operation.
balanced binary search tree
We can use the O(logN) lookup to find the word. If it's in the list, we have to remove it and rebalance the tree, unless we are willing to tolerate a lazy delete (just mark the node as available for reuse). Fortunately, lazy deletions are common in this data model since they typically have little adverse effect on the other operations. The cost of rebalance, if needed, does not change the logN analysis.
trie
We can use the O(K) lookup algorithm from above to find where the word belongs. If the word is found, we can remove its marker, effectively deleting it. We might also remove the node and some of its parents, if it's not a prefix of some other word. Moving back through parents is easy in a recursive implementation, but not in a recursive one, unless parent pointers are included.

pros and cons
Clearly, the sorted linear list is bad when the dictionary is dynamic (lots of adds and deletes). This structure should be reserved for static dictionaries.

The balanced binary tree runs consistently in logN time, where N is the number of words, and the trie in K time, where K is the number of characters in a word. Tries present a big tradeoff between storage and the cost of each step. For example, if the dictionary has about 1 million words of six characters long, on average, then the balanced binary search trees takes about 20 recursive calls to find an item, whereas the trie takes just six, BUT if the trie is storage optimized, it may need to search a long list of siblings at each level (as many siblings as letters in the alphabet).

3.
The following algorithm will print out a fully parenthesized version of the contents of a binary expression tree, given that it is called with a pointer to the root node.

type
NodePtr = ^Node;

Node = record

nodeLabel : char;

height : integer;

leftChild, rightChild : NodePtr;

end;
procedure fullParens(tree : NodePtr);

begin

if tree <> NIL then with tree^ do begin

write(‘ (’);

fullParens(leftChild);

write(nodeLabel, ‘ ’);

fullParens(rightChild);

write(‘) ’);

end
end; (* fullParens *)

a.)
First, given the expression (~A – B) * C / (D + E), show the binary tree that represents this expression. (Note: ~ is a unary operator with higher precedence than binary operators. Hint: The operand of a unary operator is typically recorded in the right subtree of the operator node.

[image: image1.wmf]+

–

~

B

/

A

E

C

*

D

b.)
Now, show what would be printed if we called fullParens with this tree.

(((~ (A)) – (B)) * ((C) / ((D) + (E))))

c.)
Write a function computeHT which, when given a pointer to the root node of a binary expression tree, sets the value of the height field of each node to reflect its height in the tree. Note: Leaf nodes have height 0.

function computeHT(tree : NodePtr) : integer;

begin
if (tree = nil) computeHT := -1

else begin

tree.height = 1+max(computeHT(tree.left), computeHT(tree.right));

computeHT = tree.height

end

end; (* computeHT *)

4.
Fill in the following table by placing X’s in the appropriate columns (one per row):

	Order of Execution
	O(1)
	O(log2N)
	O(N)
	O(Nlog2N)
	O(N2)
	O(2N)

	Worst case for Bubble Sort
	
	
	
	
	X
	

	Best case for Bubble Sort
	
	
	X
	
	
	

	Worst case for a Quick Sort
	
	
	
	
	X
	

	Average case for Merge Sort
	
	
	
	X
	
	

	Worst case for Towers of Hanoi
	
	
	
	
	
	X

	Worst case for delete from heap
	
	X
	
	
	
	

	Best case for insert into heap
	X
	
	
	
	
	

	Average case for Heapify
	
	
	X
	
	
	

5.
Assuming that T(1) = 1 and k(0, use the following table to solve the recurrence equations in a.)-d.).
	Inductive Equation
	T(n)

	T(n) = T(n – 1) + bnk
	O(nk+1)

	T(n) = cT(n – 1) + bnk, for c > 1
	O(cn)

	T(n) = cT(n/ d) + bnk, for c > dk
	O(nlogd c)

	T(n) = cT(n/ d) + bnk, for c < dk
	O(nk)

	T(n) = cT(n/ d) + bnk, for c = dk
	O(nk log n)

a.) T(n) = 2 T(n/2) + 56n10
c < dk, O(n10) by line 4
b.) T(n) = 2 T(n–1) + 56n10
c>1, O(2n) by line 2
c.)
T(n) = T(n/2) + 12
c=dk, O(log n) by line 5
d.) T(n) = T(n–1) + 12
c=1, O(n) by line 1

6.
Explain why, when we represent a queue in a linked list data structure, that we are better off linking a queue's elements from oldest to newest, rather than newest to oldest. You can either discuss this in terms of having an oldest and newest pointer or in terms of having a circularly linked list with just a newest pointer. Describe the problems with newest to oldest linking and indicate how oldest to newest addresses these problems. Use pictures to make your discussion clear and easy to follow.
Consider circular with pointer to newest, and all internal nodes pointing from newer toward older

Insertion is O(1). We can do by the following really ugly method!!!

if (newest == null) { newest = newNode; newest.next = newest; }

else {

saveData = newest.data; saveNext = newest.next;

newest.data = newNode.data; newNode.data = saveData;

newest.next = newNode; newNode.next = saveNext; }

Deletion is O(N): We must find the oldest, but the only path to it is through list. We can do by

if (newest == null) return null;

else {

old = newest;

while (old.next.next != newest) old = old.next;

oldest = old.next;

if (oldest == newest) newest = null;

else old.next = newest;

return oldest; }

Consider circular with pointer to newest, and all internal nodes pointing from older toward newer

Insertion is O(1). We can do by

if (newest == null) newNode.next = newNode;

else { newNode.next = newest.next; newest.next = newNode; }

newest = newNode;

Deletion is O(1): We can do by

if (newest == null) return null;

else {

oldest = newest.next;

if (oldest == newest) newest = null;

else newest.next = oldest.next;

return oldest; }

7.
The following questions are all about max heaps.

a.)
A heap data structure containing a maximum of MAX integers has the following rather innocent looking type definition.
type
intHeap = array[1..MAX] of integer;
What are the added properties, beyond this simple array definition, that makes a list a heap?
A heap has the property that it represents a balanced tree, where leaf nodes are as far left as possible, and the depth of any two leaves can differ by at most 1. The root of the tree is in the first entry of the heap, and the children of the node at position j in the heap are at positions 2j(left child) and 2j+1(right child), assuming 1-based indexing.

b.)
Present a Pascal-like (C-like, Java-like) procedure that deletes the maximum value from a heap H containing N integers, retaining the heap property. You will need to write any routines that you call from your deleteMax. Don’t worry about forward references; assume you can reorder procedures later. Also, assume that someone else has already written a procedure swap(A,i,j) that swaps A[i] with A[j].

procedure deleteMax(var H : intHeap; var N : integer);
begin

if N>0 then begin

deleteMax := heap[1]; swap(H,1,N); N := N-1; bubbleDown(1,N)

end
end;
procedure bubbleDown(I,N : integer);
var child : Integer;
begin

child := 2*i;

if child < N then if heap[child+1] > heap[child] then

child := child + 1;

if child <= N then if heap[i] < heap[child] then begin

swap(i, child);

bubbleDown(child)

end
end;

c.)
If N=8 and heap H has the following N elements

25 18 16 9 7 1 9 3

What does the associated Priority Ordered Tree look like?

[image: image2.wmf]

16

9

3

9

7

1

18

25

What will the list look like after a deleteMax is executed?

18 9 16 3 7 1 9

What does the associated Priority Ordered Tree look like?

[image: image3.wmf]

16

3

9

7

1

9

18

_998914715.doc

16

9

3

25

9

7

18

1

_998914942.doc

16

3

18

9

7

9

1

_978698829.doc

+

–

~

B

/

A

E

C

*

D

