COP3530 Fall 99
-- 3 --
Exam#1

COP 3530 – CS3 Fall 1999
Exam # 1
Name:
Key

10
1.
Consider an Abstract Data Type, IntBag, defined by the following protocol

public IntBag() – constructs the IntBag with an empty state. We will assume that each state item keeps track of a pair -- (value, repeat count).
public int insert(int x) – adds an integer x to the IntBag. Duplicates are allowed. Returns the number of times this integer appears in the IntBag. (This count includes the instance we just added.)

public int remove(int x) – removes an integer x from the IntBag. An attempt to remove an item not in the IntBag results in no changes. Returns the remaining number of times this integer appears in the IntBag.

public int howMany(int x) – Returns the number of times x appears in the IntBag.

public boolean thisMany(int count) – Returns true if at least one value in IntBag has a repeat count of count.

public int median() – returns the median item in the IntBag, based on a sorted low to high order of the values. Note: repeats must be considered here. The state variable M, below, may help.

Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure. We will always assume that these implementations keep track of the current number of distinct integers (N) and the total number of items (M) in the IntBag, but we will assume no additional state information, except that implied by the particular data model/structure.

Fill in the order of complexities in terms of N of each of the last five services provided for the IntBag ADT, given the following four approaches to implementation. In all cases, assume that you are concerned with expected, not worst case performance. You should not be surprised if one or more of these suggested approaches are poor choices. Note: items are stored as pairs (value, repeat count), where the value is used in the orderings of the BST and Hash Table, but the repeat count is used for ordering items in the Sorted List.

i.)
The state of the IntBag is represented as a Binary Search Tree (BST). Assume a right child / left child linked list data structure with your only direct access being to the root. value is the sort key.

ii.)
The state of the IntBag is represented by a Hash Table (HT). You may assume that collisions are handled by using sorted buckets and that the hash function evenly distributes the N elements over B buckets. value is the sort and hash key. Your answer should be in terms of two possibly independent parameters, N and B.

iii.)
The state of the IntBag is represented by an Unsorted List (UL). Assume a simple array data structure, storing data in positions 0 to N-1.

iv.) The state of the IntBag is represented by a Sorted List (SL). Assume a simple array data structure, storing data in positions 0 to N-1, sorted smallest to largest according to repeat count.

Note: Lazy deletion is not allowed for any of these structures.

BST
HT
UL
SL

insert
lg N
N/B
N
N

remove
lg N
N/B
N
N

howMany
lg N
N/B
N
N

thisMany
N
B + N
N
lg N

median
N
B+N
B + N lg N
N
N lg N
N
N lg N

1

If we stored our data in a min heap data structure representing a BPOT, using value as the key, what would be the cost of the median service?

N lg N or N

1

Under this same min heap assumption, what is the cost of selecting the first k items?
lg N or k lg N

2.
The following is an AVL tree (it has the AVL balance and BST properties).

[image: image1.wmf]

4

2

5

7

3

6

1

9

3

Draw a new BST that demonstrates what this looks like when the value 8 is added. The resulting tree will not have the AVL balance property. Circle the node in your tree that is the root of the deepest subtree at which this property is lost.

[image: image2.wmf]

4

2

5

7

3

6

1

9

8

1

What rotation is required to rebalance the tree? Circle one of the following:

Single right rotation ((X B Y) A Z) ((X B (Y A Z))

Single left rotation (X A (Y B Z)) (((X A Y) B Z)

Left right double rotation ((W B (X C Y)) A Z) ((((W B X) C Y) A Z) (((W B X) C (Y A Z))

Right left double rotation (W A ((X C Y) B Z)) ((W A (X C (Y B Z))) (((W A X) C (Y B Z))

3

Now show the tree that results after this rotation is performed.

[image: image3.wmf]

4

2

5

8

3

6

1

9

7

3
3.
The work done by a parallel even-odd transposition sort of N elements using N processors is N2. State the theoretical result that shows this is the minimum possible work for such a sort? Be sure to state the properties of this sort that make this bound applicable.

The even-odd transposition sort is an adjacent comparison-based sort. We have shown that any such sort requires ((N2) operations on a single processor. Using multiple processors cannot decrease the amount of work (instructions executed), rather this strategy can spread such work out over many processors. In our case, we spread the sort's work over N processors. These processors had to do a total of N2 work, at a minimum. That's why they spent O(N) time.

3
4.
We proved the theoretical result that comparison-based sorting of N items is of complexity ((N lg N). How did the term N lg N arise? Hint: Consider how many permutations there are of N items.
In justifying the N lg N term, do not resort to the "Law of Minor Miracles."

N items can be permuted in N! = N(N-1)(N-2) … 1 ways. A sort starts with no knowledge of which of these N! permutations it is given to sort. A comparison-based sort can only cut the number of possibilities by a half with each pair-wise comparison. To complete its sort, it must reduce the possibilities to one. Thus, its decision tree has depth lg N!, the number of times N! must be successively divided by 2 to get to one.

lg N! = lg N + lg (N-1) + lg (N-2) + … + lg 2 + lg 1

 > lg N + lg (N) + … lg (N/2)

 > N/2 lg N/2 = ((N lg N)

This shows we can do no better than N lg N. In fact, we can achieve this bound with a MergeSort.

3
5.
A Bucket Sort, using M buckets, can sort a list of length N of integers in the range [lo … lo+M-1] in O(N+M) steps. If M = O(N), then this is just O(N) steps, which seems in contrast to the theoretical result stated above that sorting N items is of complexity ((N lg N). Briefly explain this apparent contradiction.

A Bucket Sort can only handle a limited range of values. In our case we have made this limit just O(N). This allows us to totally avoid comparisons. Since we are not doing a comparison-based sort the ((N lg N) bound is not applicable. Note, if we just allowed arbitrary 32-bit integers, we would need over 4 billion buckets to do this sort, no matter how small N might be.

3
6.
The problem of checking a list of N randomly permuted comparable items (e.g., integers) for a duplicate is known to have ((N lg N) complexity. Describe an algorithm that achieves this lower bound.

Sort the list of N elements
O(N lg N)

Scan the sorted list for an adjacent pair with same value
O(N)

if a duplicate appears, report "yes"
O(1)

else report "no"
O(1)

Total cost
O(N lg N)

or could do AVL insert, reporting a duplicate when it's recognized

3

Now describe another algorithm that operates in O(N) on average.

Let h be a hash table with N buckets
O(N) – maybe even O(1)

For each element value in list
O(N)

if h.lookup(value) then report "yes"
O(1), assuming good hash; O(N) if poor

else h.insert(value)
O(1), assuming good hash; O(N) if poor

Return "no"
O(1)

Total cost
O(N)

1

What is your algorithm's worst case performance?

O(N2)

3
7.
What does the term "lazy" mean in lazy data structure? What is the advantage of a lazy data structure?

Lazy means that we compute relations among and even values of data elements as needed. The data and/or its relationships is thus implicit, rather than explicit as in normal data structures. This allows us to defer building parts of the data structure until and unless they are needed. This can give us a very compact representation, even when the structure is potentially infinite.

5
8.
Suppose f(n) is O(g(n)), show that max(f(n),g(n)) is O(g(n)). You must show this formally, using the definition of Big-Oh. In fact, as your first part of this answer, state formally what f(n) = O(g(n)) means.

f(n) is O(g(n)) if and only if there exist N(0, c>0, such that for all n(N, f(n) (g(n).

Let N' = N and c' = max(1, c)

Since f(n) is O(g(n) , for all n(N=N', f(n) (cg(n) (c'g(n)

Also, for all n, g(n) (g(n) (c'g(n). Thus, trivially, for all n(N', g(n) (c'g(n).

Combining, we have that for all n(N', max(f(n),g(n)) (c'g(n).

From iff condition on definition of order, we have that max(f(n),g(n)) is O(g(n)).

9.
Consider the Longest Common Subsequence (LCS) problem for string a1 a2… an and b1 b2 … bm. In solving this, you first build a matrix L, such that L[i,j] is the length of the lcs of a1 a2… ai and b1 b2 … bj. L[n,m] is then the length of the desired lcs. Actual lcs’s can be built by traversing L, starting at L[n,m].

4
a.)
Fill in the lcs length values of the following matrix, L, given strings santa and tastan. I have been kind enough to fill in the boundary values.

a
0
1
2
2
2
3
3

t
0
1
1
1
2
2
3

n
0
0
1
1
1
2
3

a
0
0
1
1
1
2
2

s
0
0
0
1
1
1
1

0
0
0
0
0
0
0

t
a
s
t
a
n

4
b.)
Draw lines in L, above, that represent one path that may be used to construct an lcs. Draw your path so it doesn’t obscure your answer to part a.

What is the lcs associated with the path you traced?
ata

What is a second, distinct lcs?
sta or san

6
10.
Prove that, if T(n) = T(n/2) + n lg n, with the boundary condition that T(1) = 0, that T(n) = (lg n -1) 2n + 2. To make this more reasonable, assume n is a power of 2. Thus, T(2k) = T(2k-1) + k 2k, with the boundary condition that T(20) = 0, and you must show s(k): T(2k) = (k-1) 2k+1 + 2, for all k (0.

Basis: s(0):
T(20) = T(1) = 0, by the boundary condition of T's definition.

But, with k=0, (k-1) 2k+1 + 2 = (0-1) 20+1 + 2 = -2 + 2 = 0, and the basis is verified.

IH:
Assume, for some k(0, s(k). That is, assume T(2k) = (k-1) 2k+1 + 2

IS:
Prove s(k+1). That is, show T(2k+1) = (k-1+1) 2k+1+1 + 2 = k 2k+2 + 2.

T(2k+1)
= T(2k+1-1) + (k+1) 2k+1, by definition of T, since k+1>0.

= (k-1) 2k+1 + 2 + (k+1) 2k+1, by the Inductive Hypothesis.

= (2 k) 2k+1 + 2, by simple regrouping and algebra

= k 2k+2 + 2, and the Inductive Step is verified.

3
11.
Assume you have a sequence {a0, a1, … , an-1} of integers. You had a homework assignment to compute the maximum contiguous subsequence product. I then discussed this in class, and provided you a Java applet that efficiently solves the problem. Explain, in words, the essence of the algorithm we discussed.

We start off assuming a max of 1.

We then scan the sequence, first from left to right, then from right to left, computing sub-products.

We compare each sub-product with the max product seen so far

if the new product is greater we make it the new max estimate.

If we ever get a product of zero, we reset it to 1.

We also reset the sub-product to 1 when we turn the scan around, going right to left.

Resetting on zeros is legal since the max product can never have a zero sub-product.

Scanning in both directions takes care of the problem of having an odd number of negative terms causing us to miss the max sub-product when it's only seen as part of a negative sub-product.

1

What is the order (big Oh) in terms of n of this algorithm?

O(n)

1

What kind of algorithm is this (greedy, d&c, dynamic programming.)?
greedy

6
12.
Assume you have a sequence {a0, a1, … , an-1} of distinct integers. Further, assume that this sequence starts in strictly increasing order, reaches a highest value at some point, and then finishes in strictly decreasing order. Such a list is often called bitonic (it's the concatenation of two monotonic lists). Under the simplifying assumption that the highest value is not the last value in the sequence, present an efficient, in terms of worst-case performance, algorithm that returns the highest value in such a sequence.

int maxValue = maximum(a, 0, a.length – 1);
// call the service

public int maximum (int a[], int lo, int hi) { // return highest value in the bitonic list
if (lo >= hi) return a[lo];

int mid = (int) (lo + hi)/2;

if (a[mid] < a[mid+1]) lo = mid+1;

else hi = mid;

return maximum(a, lo, high);

}

OR

public int maximum (int a[], int lo, int hi) { // return highest value in the bitonic list
while (lo < hi) {

int mid = (int) (lo + hi)/2;

if (a[mid] < a[mid+1]) lo = mid+1;

else hi = mid;

}

return a[lo];

}

1

What is the order (big Oh) in terms of n of this algorithm?

O(lg N)

1

What kind of algorithm is this (greedy, d&c, dynamic programming.)?
d&c

13.
Consider the following labeled graph. This can be represented in a variety of ways. Two common choices are in an adjacency matrix or an adjacency list. I have done each for you. Write next to each of these representations the cost, in terms of the parameters N, the number of nodes or vertices (7 in our simple example), E, the number of edges (12 in our case), and K, the maximum number of edges emanating from any node (4 in our case), of doing each of the following operations.

2

Determine, for two given vertices v1 and v2, whether or not there is an edge between v1 and v2.

2

Compute the sum of the weights along all edges in the graph.

4

Produce a list of all the weighted edges in the form (v1, v2, weight) sorted low to high by weights.

[image: image4.wmf]A

B

F

E

G

C

D

6

7

5

7

7

3

7

11

6

14

5

3

Adjacency Matrix Representation

A
B
C
D
E
F
G

A
0
(
5
3
(
(
14

B
(
0
(
(
5
7
6

C
5
(
0
11
3
7
(

D
3
(
11
0
7
(
6

E
(
5
3
7
0
(
7

F
(
7
7
(
(
0
(

G
14
6
(
6
7
(
0

IsThereAnEdgeConnecting(v1, v2) Complexity
O(1)

SumOfWeightsOfAllEdges()
 Complexity
O(N2)

SortedListOfEdges()

 Complexity
O(N2+ElgE)

Adjacency Lists Representation

A
((C,5),(D,3),(G,14))

B
((E,5),(F,7),(G,6))

C
((A,5),(D,11),(E,3),(F,7))

D
((A,3),(C,11),(E,7),(G,6))

E
((B,5),(C,3),(D,7),(G,7))

F
((B,7),(C,7))

G
((A,14),(B,6),(D,6),(E,7))

IsThereAnEdgeConnecting(v1, v2)
Complexity
O(K) or E/N
SumOfWeightsOfAllEdges()

Complexity
O(N+E)

SortedListOfEdges()

Complexity
O(N+ElgE)
_1000935827.doc
[image: image1.wmf][image: image2.wmf]

9

4

2

5

7

3�

8�

1

6

_1000936029.doc
[image: image1.wmf][image: image2.wmf]

9

4

2

5

8

3�

7�

1

6

_1000667974.doc
[image: image1.wmf]

9

4

2

5

7

3�

1

6

