
Introduction
In some of the previous sets of notes we examined many different variants of search trees. In this set of notes we will examine a special variant of the B-tree which is suited to representing spatial data.

R-Trees
Spatial data are the types of objects which are utilized frequently in many different application areas. Computer-assisted design (CAD), geographical data, and VLSI design layout are examples of application areas in which spatial data is created, searched, and deleted. This type of data requires special data structures to process in an efficient manner. For example, we might request that all counties in an area specified by geographical coordinates be printed or that all buildings within walking distance from a particular police station be identified. There have been many different data structures that have been developed to represent this type of data, R-trees were one of the first structures developed to handle such data and are still commonly used. There have been, as with most of the advanced tree structures that we have examined, several variants of R-trees including R+-trees and R*-trees.

A R-tree is a height-balanced tree which is an extended variant of the B-tree. Objects are represented in an R-tree by their minimum bounding rectangle (MBR). R-tree are characterized by the following properties:

1. Every leaf node contains between m and M index records (where m (M/2), unless it is the root.

2. For each index record (I, tuple-identifier) in a leaf node, I is the minimum bounding rectangle that spatially contains the m-dimensional data object represented by the indicated tuple.

3. Every internal node has between m and M children, unless it is the root.

4. For each entry (I, child-pointer) in an internal node, I is the minimum bounding rectangle that spatially contains the rectangles in the child node.

5. The root node has at least two children unless it is a leaf node.

6. All the leaf nodes appear on the same level.

7. All MBRs have sides parallel to the axis of a global coordinate system as shown in Figure 1.

Figure 1 – A collection of spatial objects.

Each node in the tree corresponds to a disk page. A leaf node consists of a number of entries with the form: (I, tuple-id), where I is an MBR, and a tuple-id is the unique identifier for the tuple in the database holding the object corresponding to that MBR. I is represented as I = (I0, …, Im-1), where Ii is a closed, bounded interval [a, b] along direction i. Nonfinite intervals can also be considered, by having a, b, or both equal to infinity.

Internal nodes are composed of a number of entries of the form: (I, child-ptr) where I is the MBR for all rectangles in the lower node (the child node) pointed to by child-ptr. Each node in the tree can have a maximum of M entries and a minimum of m (where m (M/2) entries, unless it is the root. The root node has at least two children, unless it is a leaf.

Using the example shown in Figure 1, we have a set of spatial objects (MBRs) in a two-dimensional space (x-y coordinate system). Figure 2 illustrates the R-tree for this set of MBRs. Each node in the tree has a maximum of three entries. The objects of Figure 1 appear in the leaf nodes of the R-tree.

Figure 2 – R-tree (shown at fairly high-level of detail) corresponding to data of Figure 1.

Point and range queries can be processed in a top-down recursive fashion on an R-tree. The query point (or region) is tested first against each entry (I, child-ptr) in the root node. If the query point is inside (or the query region overlaps with) I, then the search algorithm is applied recursively on the entries in the R-tree node pointed to by the child-ptr. This process stops after reaching the leaf level. The selected entries in the leaves are used to retrieve the records associated with the selected spatial keys.

Example
Consider the search for objects which overlap rectangle 5 in Figure 1. Entry x in the root overlaps with the MBR for 5 (since MBR for x contains all points in MBR of 5). Thus the search continues into the left child (child-ptr containing x) of the root. The entries b and c in x are overlapping with rectangle 5 and thus they are searched next. Within the b node (which is a leaf node) we find that object 6 overlaps with the search object and within the c leaf node we find that objects 4 and 5 overlap with the search object, so the query identifies leaf entries 4, 5, and 6 as objects which overlap the search object 5.

A More Detailed Look at R-Tree Nodes
The example and figures above, gave a somewhat high level look at the make-up of an R-tree. To better understand how the R-tree works we need to look more closely at the node structure of a R-tree as well as a more detailed example of spatial data. To keep things fairly simple, let’s assume that we are working in only two-dimensional space and thus the normal Cartesian coordinate system (x-y system) applies to the MBRs stored in the R-tree.

A leaf node in a general R-tree contains entries of the form (rectangle, id) where rectangle = [(x0, y0), …, (xn-1, yn-1)]. This is an n-dimensional rectangle and id is a reference to a record in the data file. Rectangle is the smallest rectangle containing the object id (MBR). Restricting to two-dimensional space would typically produce only a pair of such values. Consider the following example.

Figure 3 – Example 2-d spatial object. MBR = {[10,100], [5, 52]}.

Given the object in Figure 3, the leaf node representing this object would have the form: ({[10,100], [5, 52]}, ab). Figure 4 illustrates the structure of the leaf node that would contain this information.

Figure 4 – Leaf node representing the spatial data of Figure 3.

An internal node has the form (rectangle, child-ptr) where rectangle is the smallest rectangle (MBR) encompassing all the rectangles found in child-ptr. The structure of an R-tree is thus, not identical to a B-tree.

Operations on R-trees
Inserting new spatial data (rectangles) into an R-tree is done in B-tree fashion, with splits and redistribution of data. A crucial operation is finding the proper leaf in which to insert a rectangle. When moving down the R-tree, the subtree chosen in the current node is the one that corresponds to the rectangle requiring the least enlargement to include the rectangle in question. In other words, it is the “best fit”. If a split occurs, new encompassing rectangles must be created. The detailed algorithms is quite complicated and somewhat beyond the scope of this course so I didn’t put it in the notes. However, as an example of the difficulties this algorithm must contend with, consider that it must decide how to divide the rectangles of the node which is being split. The algorithm must generate rectangles which enclose all the rectangles of the two resulting nodes and are minimal in size (remember the nodes store MBRs). This problem is quite complicated in two-dimensions and even more so in higher-dimensions. Another problem that potentially must be overcome during the insertion of a new rectangle into an R-tree is that since the splitting may introduce new MBRs, it is quite possible that existing MBRs will no longer be valid and thus must be deleted during the course of the insertion. All of these problems, plus many others that we haven’t considered are compounded by the fact that, like in a B-tree, the insertion may lead to cascade splitting, possibly all the way to the root. This means that this very difficult process may be repeated at each level in the R-tree! The overall capability of this algorithm affects the search algorithm in fairly drastic fashion for wide and deep R-trees.

In order to demonstrate the complexity of insertion into an R-tree, we’ll consider the following example. Again, just to simplify things, we’ll assume two-dimensional space and view the tree at a level high enough that we can deal with MBRs without specifying their values.

Example: Building an R-tree
1. To begin let’s assume we have three non-overlapping rectangles (objects) in our “space”, with “key values” R1, R2, and R3. Figure 5 illustrates the “space” and the configuration of the non-overlapping rectangles. Figure 6 illustrates the corresponding initial R-tree, with the three objects all in the root node of the tree. Assume the R-tree is of order 4.

Figure 5 – Illustration of our example “space” showing three non-overlapping objects.

Figure 6 – The R-tree corresponding to the “space” of Figure 5.

Now, lets change the “space” by inserting a new object, rectangle R4. This insertion causes a split which results in the creation of two encompassing rectangles named R5 and R6. This change in the “space” is illustrated in Figure 7 while the R-tree representation of the new space is shown in Figure 8.

Figure 7 – The “space” after the insertion of object (rectangle) R4.

Figure 8 – The R-tree after split and redistribution caused by insertion of R4 into the “space”.

Notice that the insertion of R4 which caused the split of the root node caused the creation of MBRs R5 and R6 in the “space”.

Continuing, let’s insert a new rectangle R7 into the “space” as shown in Figure 9 with the corresponding modified R-tree shown in Figure 10. Notice that this insertion does not cause a splitting and is a simple insertion. Notice also that since R7 is entirely contained within R5 that the MBR for R5 requires no modification, it is neither enlarged nor contracted.

Figure 9 – The “space” after the insertion of object (rectangle) R4.

Figure 10 – The R-tree after insertion of R7 into the “space”.

Continuing, lets assume that we now insert a new object R8 into the space as shown in Figure 11. While the insertion into the space is straight-forward, it does require a recalculation of the MBR defining R6 which must be expanded to accommodate the new object R8 into the MBR. If the expansion of R6 were to wholly encompass another object then more extensive reorganization at this point would be required. In our example, this is not the case, so a relatively simple boundary recalculation is performed to redefine R6. While this is not apparent from our example since I am specifically not using the MBR values, none the less it would occur so that during this insertion R6 will be redefined.

Figure 11 – The “space” after the insertion of object (rectangle) R8 which redefines R6.

Figure 12 – The R-tree after insertion of R8 into the “space”.

As a final change to our space, lets assume that a new object R9 is inserted into the space as shown in Figure 13. Once again, this insertion will cause a splitting of the right subtree into two leaf nodes as well as the deletion of object R6 and the creation of two new objects R10 and R11. The corresponding R-tree is shown in Figure 14. Note that R6 cannot be merely recalculated since it no longer encompasses the same set of objects that it did before the node split, so it must simply be discarded. Notice too, that unlike in the B+-tree it cannot remain in place within the tree structure to guide a search because its presence would improperly direct a search.

Figure 13 – The “space” after the insertion of object (rectangle) R9 which causes a split and the subsequent deletion of R6 and the creation of R10 and R11.

Figure 14 – The R-tree after insertion of R9 into the “space” and subsequent deletion of R6 and creation of R10 and R11. The final R-tree for our example.

R+-Trees
In an R-tree a given rectangle r (object) can be contained in many encompassing rectangles, but it can only be stored in one leaf node. Therefore, a search algorithm may take a wrong path at some level h in the R-tree when it sees that r is enclosed by another rectangle found in a node on this level. For example, consider R3 in Figure 13 which is encompassed by both R10 and R11. Since R10 appears in the node before R11 in the root node, the search accesses the middle leaf when looking for R3. However, if R11 preceded R10 in the root, following the path corresponding with R11 would be unsuccessful. For very deep or very tall R-tree this overlapping of objects can become excessive and should be avoided. It turns out that there are several variations of R-trees (everything has a variant!) that remove this overlapping problem.

One variant that removes this overlap is called an R+-tree. In this variant (as well as many others) the encompassing rectangles are no longer overlapping, and each encompassing rectangle is associated with all the rectangles that it intersects. However, in an R+-tree the data rectangle can be found in more than one leaf node.

Figure 15 illustrates the change in the space from the final insertion in our earlier example that would result if we were representing this spatial data in an R+-tree rather than an R-tree. Notice that after R9 was inserted into the space that R8 is contained in both R10 and R11 (it can be found in two leaves in the R+-tree), since it is intersected by both R10 and R11.

Figure 15 – The “space” for an R+-tree after the insertion of object (rectangle) R9 which causes a split and the subsequent deletion of R6 and the creation of R10 and R11.

Figure 16 – The R+-tree after insertion of R9 into the “space” and subsequent deletion of R6 and creation of R10 and R11. The final R+-tree for our example.

Unfortunately, operations on R+-trees make it very difficult to ensure, without further manipulations that nodes are at least half full.

Performance of R-trees and R-tree Variants
The maximum number of levels in an R-tree is (logm N((1, where N is the total number of entries in the tree and m is the order of the tree. If m is greater than 3 or 4, the tree will spread horizontally, so that almost all space is used for leaf nodes containing index records. Typically the value of m is large, and the depth of the R-tree is relatively small (shallow tree). For example, an R-tree indexing 100 million rectangles may have a depth of 5 given m = 100! [As a complete aside, although pertinent to the application of R-trees, Intel’s Pentium 4 chip contains about 42 millions transistors in its spatial 2-d layout, so an R-tree of depth no greater than 5 could represent the spatial layout of this chip.]

Search performance depends on tow parameters, coverage and overlap. The coverage of a level of the R-tree is the total area covered by all MBRs of all nodes at that level. In this fashion, coverage is an indirect measure of dead space area, or empty space covered by the tree. The overlap of a level of the tree is the total area of space covered by more than one rectangle associated with nodes at that level. Overlap may make it necessary to visit more than one node of the tree to find an object (see the case presented above) and excessive overlap must be avoided. This problem of an R-tree means that the worst case performance of search operations cannot be estimated, even if an attempt is made to minimize overlap.

For an R-tree to be efficient for searching, both coverage and overlap must be minimized. In fact, it is more critical to minimize overlap than coverage. This is the justification behind the development of variants like the R+-tree. There are other variants as well, such as packed R-trees, R*-trees. Packed R-trees work well when the data is fairly static and the objects are known in advance of the tree construction. Upon creation of the tree, since the objects are known in advance, the tree is optimized for coverage and overlap. R*-trees are a variant that relies on the combined optimization of area, margin, and overlap of each MBR in every node of the tree. R+-trees (see above) are better than packed R-trees for highly dynamic data because they ensure continued efficiency since overlap is removed. There are also variants such as the packed R+-tree, but most of these require a very very careful selection of the node to split on an insertion to prevent a cascade of downward node splitting. This is because when a node overflows, the respective rectangle is split by a hyperplane. The hyperplane is parallel to one of the k-dimensions (assuming k-dimensional space), and may have several different positions. The choice of which hyperplane to use for the split can be based on several criteria, such as the reduction of coverage or height of the tree. For the latter case, the hyperplane must be chosen to minimize the number of rectangle splits.

Advanced Tree Structures – R(Trees (14)

R7

R2

R1

R8

R4

R3

R9

R8

R5

R10

R11

R2

R7

R3

R9

R5

R1

R8

R10

R4

R11

R11

R9

R8

R10

R11

R7

R2

R1

R4

R3

R11

R10

R5

R2

R7

R3

R1

R4

R5

R9

R8

R8

R7

R2

R1

R8

R4

R3

R6

R5

R2

R3

R7

R1

R4

R6

R5

R7

R7

R2

R1

R4

R3

R6

R5

R2

R3

R1

R4

R6

R5

R4

R3

R2

R1

R5

R6

R4

R6

R5

R2

R3

R1

R3

R2

R1

R3

R2

R1

ab

([10,100], [5, 52]) ab

key = ab

		object

y

5

52

10

x

100

[15,16]

[12,13,14]

[10,11]

[8,9]

[4,5]

[6,7]

[1,2,3]

g

f

e

d

c

b

a

y

x

R

g

f

e

 d

c

 b

 a

 y

x

16

15

14

13

12

11

10		

 9

 8

 7

 6

 5

 4

 3

 2

1

R-Trees - 11

