[image: image1.bmp]
Introduction
This set of notes in intended to clarify (possibly simplify) some of our previous discussions about red-black trees.  Clearly, the most difficult concept regarding red-black trees is the re-balancing that occurs after insertion or deletion in the tree.  This set of notes will focus only on these aspects of red-black trees; see the original set of notes for other details regarding this data structure.  

Definition and Example for Reference

A red-black tree is defined as:

1. A binary search tree.

2. The root and all external nodes are colored black.

3. No root-to-external-node path has two consecutive red nodes.

4. All root-to-external-node paths have the same number of black nodes.

Figure 1 illustrates an example red-black tree.


Figure 1 – A red-black tree

Notice that the tree in Figure 1 satisfies all of the properties of a red-black tree.  Namely, (1) it is a BST, (2) the root and all external nodes are colored black, (3) no root-to-external-node path has two consecutive red nodes, and (4) all root-to-external-nodes paths contain the same number of black nodes; two in this example.  (Applying the alternate definition we have:  every path from the root to an external node has exactly two black pointers and three black nodes (including the root and the external node); and no such path has two consecutive red pointers.)

Insertion into a Red-Black Tree
Recall from our earlier discussions that a new node, upon insertion, is colored  red.  This is because insertion of a new black node is guaranteed to cause a violation of property #3.   Since all new nodes are initially red nodes, this leads to a total of eight different insertion situation in which an imbalance in the tree can occur.  Recall that not all insertions of red node will cause an imbalance.  

The imbalances that can occur due to an insertion can be categorized into two categories depending upon the configuration of the existing tree into which the insertion occurs.  Let’s assume that u is the newly inserted red node, pu is its parent, and gu is the grandparent of u and the parent of pu.  Since we know that the tree in which the insertion is to take place is a valid red-black tree we know that all four of the properties for red-black trees hold.  We also know that any insertion is occurring as a new leaf node (not counting the external nodes).  This means that the subtree in which the insertion is occurring is already balanced and if the insertion causes it to become imbalanced it can do so no further than two levels above the new node in the tree, i.e., at its grandparent level.  Therefore, since the imbalance occurs (if it occurs at all) within the subtree rooted at the grandparent then we need to be concerned with the color of the grandparents’ other child (the child of gu which is not pu).   If the other child of gu is red there are four cases to consider: LRr, LLr, RRr, and RLr.  Each of these four types of imbalances is shown in Figure 2.

LRr imbalance:  pu is the left child of gu, u is the right child of pu, and the other child of gu (the right child in this case) is red.

LLr imbalance:  pu is the left child of gu, u is the left child of pu, and the other child of gu (the right child in this case) is red.

RRr imbalance: pu is the right child of gu, u is the right child of pu, and the other child of gu (the left child in this case) is red.

RLr imbalance:  pu is the right child of gu, u is the left child of pu, and the other child of gu (the left child in this case) is red.




Figure 2 – LRr, LLr, RRr, and RLr imbalances due to insertion

Notice that in each of these cases, the red-black tree is invalid because property #3 (two consecutive red nodes occur) has been violated by the insertion.  Specifically, we have not introduced an additional black node that would cause property #4 to be violated.  Each of the imbalance types of: LRr, LLR, RRr, and RLr can be removed by changing the color of nodes.  Rotations are not required to remove these types of imbalances.





Figure 3.  LRr, LLr, RRr, and RLr  imbalances removed via color changes.

Notice that before the color change the subtrees rooted at gu contained one black node on the path to the external nodes and after the color change there is still one black node along this path.  Therefore, when considering the rest of the tree the number of black nodes along any root-to-external node path contains the same number of black nodes after the insertion as it did before the insertion.

Also notice that the color change of gu is not performed if gu happens to be the root of the entire tree, since the root of a red-black tree must be black.  If this is the case then the diagrams in Figures 2 and 3 represent the entire red-black tree and it is clearly balanced.  If this is not the case, then the total number of black nodes on the path from gu to any external node in either subtree of gu has remained constant before and after the insertion and thus the remainder of the tree (when gu is not the root) is still balanced as well.

When the other child of gu is black there are four cases to consider: LRb, LLb, RRb, and RLb.  Each of these four types of imbalances is shown in Figure 4.

LRb imbalance:  pu is the left child of gu, u is the right child of pu, and the other child of gu (the right child in this case) is black.

LLb imbalance:  pu is the left child of gu, u is the left child of pu, and the other child of gu (the right child in this case) is black.

RRb imbalance: pu is the right child of gu, u is the right child of pu, and the other child of gu (the left child in this case) is black.

RLb imbalance:  pu is the right child of gu, u is the left child of pu, and the other child of gu (the left child in this case) is black.

Note that, as before, the tree into which the insertion is occurring is a valid red-black tree.  Figure 5 illustrates the rebalancing that must occur upon the insertion of the new node u into each case.   Note that the LLb and RRb cases require single rotations followed by recoloring while the LRb and RLb cases require double rotations followed by recoloring.




Figure 4 – LRb, LLb, RRb, and RLb imbalances due to insertion











Figure 5.  LRb, LLb, RRb, and RLb  imbalances removed via rotations.





Figure 6.  LRr imbalance with rebalancing and LLr imbalance with rebalancing.






Figure 7. RLr imbalance with rebalancing and RRr imbalance with rebalancing.






Figure 8.  LRb imbalance with rebalancing and LLb imbalance with rebalancing.










Figure 9.  RLb imbalance with rebalancing and RRb imbalance with rebalancing.

Deletion from a Red-Black Tree
Color changes and a rotation may be required to rebalance the tree after the deletion occurs depending upon the original structure of the red-black tree.  In the discussion that follows the node designated as y is the node which will take the place of the deleted node.


When property #3 is violated through a deletion, the subtree rooted at y is one black node (equivalently one black pointer) deficient; therefore, the number of black nodes (and hence pointers as well) on root-to-external-node paths in the subtree rooted at y is one less than on paths to other external nodes.  As was the case for insertion, this defines an imbalance in a red-black tree.  

Classification of imbalances in red-black trees due to deletion is similar in nature to the classification of imbalances caused through insertion, however, there are different cases to consider.  For the subtree rooted at y, we need to identify its parent py and its sibling v.  When y is the right child of py, the imbalance is of type R, otherwise, it is of type L.  Notice that since y is one black node deficient, v cannot be an external node.  If v is a black node the imbalance is of type Lb or Rb.  When v is red, the imbalance is of type Lr or Rr.  We’ll consider each case separately.

Handling Xb Imbalances
Handling Xb imbalances (where X is either R or L) requires a further subdivision into 3 categories based upon the number of children of v (the sibling of y) which are red.  

Rb0 [color change]:  y is a right child of py, v is black, and v has 0 red children.

Lb0 [color change]:  y is a left child of py, v is black, and v has 0 red children.

Rb1 [rotation]:  y is a right child of py, v is black, and v has 1 red child.

Lb1 [rotation]:  y is a left child of py, v is black, and v has 1 red child.

Rb2 [rotation]:  y is a right child of py, v is black, and v has 2 red children.

Lb2 [rotation]:  y is a left child of py, v is black, and v has 2 red children.

Rb0 and Lb0 Imbalances



Figure 10.  (a) The 2 possible Rb0 imbalances, (b) Rb0 color change to rebalance.






Figure 11. (a) The 2 possible Lb0 imbalances, (b) Lb0 color change to rebalance.

Rb1, Rb2 , Lb1, and Lb2 Imbalances
Rotations are required when the imbalance is one of Rb1, Rb2, Lb1, or Lb2.  The different rotations that are required for Rb1 and Rb2 are illustrated in Figure 12.  The different rotations that are required for Lb1 and Lb2 are illustrated in Figure 13.  A thatched node indicates a node that may be either red or black and is unchanged by rotation.














Figure 12.  (a) – (d) Rb1 rotations, (e) – (f) Rb2 rotations












Figure 13.  (a) – (d) Lb1 rotations, (e) – (f) Lb2 rotations

Handling Xr Imbalances
Handling Xr imbalances (where again, X is either L or R and the two cases are symmetric) again requires further subdivision into three subtypes depending the number of red children that v’s right child has.  All cases are handled by rotations.  Type Rr imbalances occur when y is one black node deficient, v is red, both vL and vR have at least one black node that is not an external node; therefore, both children of v are internal nodes.

Rr0 imbalance:  y is a right child of py, v is red, and v has 0 red children.

Lr0 imbalance:  y is a left child of py, v is red, and v has 0 red children.

Rr1 imbalance:  y is a right child of py, v is red, and v has 1 red child.

Lr1 imbalance:  y is a left child of py, v is red, and v has 1 red child.

Rr2 imbalance:  y is a right child of py, v is red, and v has 2 red children.

Lr2 imbalance:  y is a left child of py, v is red, and v has 2 red childen.

Rr0 and Lr0 Imbalances
Figure 14 illustrates a type Rr0 imbalance and the rotation required to rebalance the tree.





Figure 14.  (a) Rr0 imbalance, (b) Rr0 rotation to rebalance.

Figure 15 illustrates a type Lr0 imbalance and the rotation required to rebalance the tree.





Figure 15.  (a) Lr0 imbalance, (b) Lr0 rotation to rebalance.

Rr1, Lr1, Rr2, and Lr2 Imbalances
Figure 16 illustrates the possibilities that exist for Rr1 and Rr2 imbalances and the rotations that will rebalance the tree after the deletion.  


















Figure 16.  (a) – (d) Rr1 rotations, (e) – (f) Rr2 rotations

Figure 17 illustrates the possibilities that exist for Lr1 and Lr2 imbalances and the rotations that will rebalance the tree after the deletion.  













Figure 17.  (a) – (d) Lr1 rotations, (e) – (f) Lr2 rotations

Advanced Tree Structures – Red-Black Trees Revisited (8)





wR





y





y





vL





v





wL





x





vL





py





xR





y





y





xR





xL





v





x





wL





w





py





py





(a)





v





wL





w





wR





y





vL





py





(a)





(b)





vR





y





vL





v





py





vR





y





vL





py





v





vL





v





(c)





(d)





xL





w





v





wL





x





vL





py





xR





y





y





xR





xL





x





wL





w





py





vL





v





(a)





wR





wL





(b)





vL





w





y





v





(e)





(f)





wL





w











py





wR





y





vL





v





v





wL











w





wR





y





vL





py





(c)





(d)





wL





w











py





wR





y





vL





v





py





wL











w





RRb imbalance removed  with single rotation of pu about gu followed by recolor of pu from red to black and gu from black to red





gu





u








pu





RRb imbalance





u





pu








gu





balance





balance





RLb imbalance removed with double rotation and recolor of pu to black





u





pu





gu





RLb imbalance











pu








gu





balance





LLb imbalance removed with single rotation of pu about gu followed by recolor of pu from red to black and gu from black to red





gu





u








pu





LLb imbalance





u





pu








gu





balance





LRb imbalance removed with double rotation followed by recolor of u to black and both pu and gu to red





u





pu





gu





LRb imbalance





u





pu








gu





Removing LRb and RLb imbalances


Perform double rotation of u about pu followed by u about gu.


For LRb recolor u to black and both pu and gu to red.


For RLb recolor pu to black.





Removing LLb and RRb imbalances


Perform single rotation of pu about gu.


Recolor pu to black and gu to red (unless gu is the root).





RRr imbalance removed with color change





u





pu











gu





balance





RRr imbalance





u





pu











gu





balance





RLr imbalance removed with color change





u





pu











gu





RLr imbalance











pu











gu





balance





balance





LLr imbalance removed with color change





u





pu











gu





LLr imbalance





u





pu











gu





LRr imbalance removed with color change





u





pu











gu





LRr imbalance





u





pu











gu





pu











gu





LLr imbalance removed with color change





u





pu











gu





Removing LRr, LLr, RRr, and RLr imbalances via color changes





Change the color of pu from red to black.  


Change the color of the other child of gu from red to black.


Change the color of gu from black to red provided that gu is not the root of the tree.  











gu





LRr imbalance removed with color change





u





pu











gu





RRr imbalance removed with color change





u





RRr imbalance





gu





pu





gu





u





pu

















gu





62





5





10





60





70





80





50





65





u





pu








gu





RLr imbalance removed with color change





u





pu





RLr imbalance





u





pu











gu





LRr imbalance





u





pu











LLr imbalance





u





(b)





vL











vR





vL





v





py





(b)





vR











y





py





vR





y





vL





v





v





py





(a)





vR





Property #4 (number of black nodes on all root-to-external-node paths is the same) will be violated by deletion only when the deleted node is black and y is not the root of the resulting tree.








y





vL





v





py





vR





y





py





vL





v





py





v





vL





y





vR





vR





y





vL





v





py





vR





y





vL





v





py





(a)





(b)





vR





y





vL





v











(a)





wR





y





vL





v











py





py





w





wL





(c)





wL





w











py





wR





y





vL





v





(e)











y





v





vR





py





v





vL





(b)





wL





(d)











w





wR





y





vL





v





py





py





wL











w





wR





y





vL





v





(f)





py





vL





y





vR





py





v





vL





y





vR





wL





w





xR





wR





y





(b)





(a)





v





v





vL





y





wR





py





vL





(b)





(a)





w





v





wL





x





xR





y





vL





py





v





vL





y





x





xL





py





w





wL





(d)





(c)





xL





w





v





wL





x





vL





py





xR





y





xR





xL





x





wL





w





py





vL





(f)





(e)





w





wL





py





xL





v





y



























































































































































balance





balance





balance





balance





balance





balance





balance





balance





balance





balance





balance





LLb imbalance





balance





balance





balance





balance





gu








pu





u





RRb imbalance





gu








pu





u





LRb imbalance





gu








pu





u





RLb imbalance





(f)





pu








gu





gu





pu





RLb imbalance removed with double rotation and recolor of pu to black





RRb imbalance removed  with single rotation of pu  about gu followed by recolor of pu from red to black and gu from black to red





u





u





w





gu





LRb imbalance removed with double rotation followed by recolor of u to black and both pu and gu to red





LLb imbalance removed with single rotation of pu  about gu followed by recolor of pu from red to black and gu from black to red





u








gu





u





pu





xL





pu





(e)








Red-Black Trees Revisited - 11

