[image: image1.bmp]
Introduction
With this set of notes we begin examining advanced tree structures with which you may have had no experience. For the most part the various trees that we will examine are applied to the problem of searching, although data representation is still an issue. For each of the advanced tree structures that we will cover, we’ll examine the basic structure of the tree and identify the characteristics which distinguish it from other trees in addition to exploring the normal operations of insertion, deletion, and update. When appropriate we’ll also focus on suitable applications for the various trees.

Red-Black Trees
A red-black tree is a binary search tree in which every node in the tree is colored either red or black. The remaining properties of a red-black tree are derived from its corresponding extended binary tree.

A binary tree in which a special node called an external node replaces every empty subtree is called an extended binary tree. Figure 1 illustrates a binary tree and its corresponding extended binary tree.

Figure 1 – (a) binary tree, (b) extended binary tree

Based upon the definition of the extended binary tree, we can define the additional properties of a red-black tree.

A red-black tree is defined as
:

1. A binary search tree.

2. The root and all external nodes are colored black.

3. No root-to-external-node path has two consecutive red nodes.

4. All root-to-external-node paths have the same number of black nodes.

Figure 2 illustrates an example red-black tree.

Figure 2 – A red-black tree

Notice in Figure 2 that the tree satisfies all of the properties of a red-black tree. Namely, (1) it is a BST, (2) the root and all external nodes are colored black, (3) no root-to-external-node path has two consecutive red nodes, and (4) all root-to-external-nodes paths contain the same number of black nodes; two in this example. (Applying the alternate definition we have: every path from the root to an external node has exactly two black pointers and three black nodes (including the root and the external node); and no such path has two consecutive red pointers.)

The rank of a node in a red-black tree is the number of black pointers (or the number of black nodes minus 1) on any path from the node to any external node in its subtree. This means that the rank of any external node is 0. In Figure 2, the rank of the root node is 2. The rank of the root’s left child (node 50) is also 2, and the rank of the root’s right child (node 80) is 1.

Representation of a Red-Black Tree
Although the definition of the red-black tree utilizes external nodes, implementation of this structure will not use external nodes, but rather revert to the convention of using null pointers, rather than physical nodes to represent the external nodes. Since pointer and node colors are so closely related, for each node we need to store only its color or the color of the two pointers to its children. Node colors require only a single additional bit/node, while pointer colors require two bits/node. Since the space requirement difference is almost negligible which implementation is actually chosen will typically depend upon the actual run times of the resulting red-black tree algorithms.

Searching a Red-Black Tree
Searching a red-black tree is accomplished with the same algorithms that are employed to search a standard BST. Recall that the complexity of such a algorithm for a general BST is O(h) where h is the height of the BST. Since a red-black tree is a self-balancing search tree (we’ll see that this is in fact the case later) this means that searching a red-black tree is an O(log2 n) operation where n is the number of nodes (not including external nodes) in the tree.

The height of a red-black tree has a worst case which is approximately 1.44log2(n+2) of an AVL tree with the same number of internal nodes. This means that given a BST, an AVL tree, and a red-black tree that the AVL tree will have the least worst case height. Therefore, for applications in which searching is the dominant operation the AVL tree will demonstrate the best worst-case performance.

Insertion into a Red-Black Tree
The basic insertion strategy for a red-black tree is the same as for a general BST. However, when inserting into a red-black tree, we must assign the new node a color which will not violate any of the properties that define the red-black tree. If the tree was empty before the insertion, then the new node is the root and must be colored black. Suppose the tree was not empty before the insertion. If the new node is given the color black, then there will be an extra black node on paths from the root to the external nodes that are children of the new node. This dilemma is illustrated in Figure 3 in which a new node with value 55 is inserted into the red-black tree of Figure 2.

Figure 3 – Insertion of new black node containing 55 violates property #4 of red-black trees

As illustrated in Figure 3, the insertion of the new node with value 55 has violated property #4 of the red-black trees which states that all root-to-external-node paths contain the same number of black nodes. Clearly this is not the case for the tree in Figure 3. Therefore, making the new node a black node will not work.

On the other hand, suppose that we make the new node red. Then depending upon where the new node is inserted (depends upon its value) we may or may not violate property #3 which states that no root-to-external-node path has two consecutive red nodes. Figure 4 illustrates the insertion of a new node with value 55 into the red-black tree of Figure 2. Making the new node containing 55 a red node in this case does violate property #3 since clearly there is a path from the root to an external node that contains two consecutive red nodes.

Figure 4 – Insertion of new red node containing 55 violates property #3 of red-black trees

However, it is possible, for a given red-black tree that insertion of a new node that is red will not violate property #3 of red-black trees. This is illustrated in Figure 5 with the insertion of a new node containing the value 85 into the red-black tree of Figure 2.

Figure 5 – Inserting a new red node containing 85 does not violate property #3

Since the insertion of a new red node potentially does not violate any of the properties of red-black trees and the insertion of a new black node is guaranteed to violate property #3, all new nodes will be red nodes.

If making the new node red causes a violation of property #3, then the red-black tree has become imbalanced. The nature of the imbalance is determined by examining the new node, its parent, and its grandparent. Since it is property #3 that has been violated and we now have two consecutive red nodes and one of them is the new node, the other must be its parent. This implies three conditions hold: (1) the parent of the new node must exist, (2) the parent of the new node is not the root of the tree or its color would be black, and (3) the grandparent of the new node must exist and it must be black.

To make the following discussion easier to follow, lets assume that the new node is called u, the parent of the new node is called pu, and the grandparent of the new node is called gu.

There are several different types of imbalance that can occur depending upon the structure of the tree. These are as follows:

Type LLb: When pu is the left child of gu, u is the left child of pu, and the right child of gu is black (this includes the case when the right child of gu is an external node); the imbalance is of type LLb.

Type LLr: When pu is the left child of gu, u is the left child of pu, and the right child of gu is red; the imbalance is of type LLr.

Type LRb: When pu is the left child of gu, u is the right child of pu, and the right child of gu is black (this includes the case when the left child of gu is an external node); the imbalance is of type LRb.

Type LRr: When pu is the left child of gu, u is the right child of pu, and the right child of gu is red; the imbalance is of type LRr.

Type RRb: When pu is the right child of gu, u is the right child of pu, and the left child of gu is black (this includes the case when the left child of gu is an external node); the imbalance is of type RRb.

Type RRr: When pu is the right child of gu, u is the right child of pu, and the left child of gu is red; the imbalance is of type RRr.

Type RLb: When pu is the right child of gu, u is the left child of pu, and the left child of gu is black (this includes the case when the left child of gu is an external node); the imbalance is of type RLb.

Type RLr: When pu is the right child of gu, u is the left child of pu, and the left child of gu is red; the imbalance is of type RLr.

Imbalances of type XYr (where X and Y may be L or R) are handled by changing color, while imbalanced of type XYb (where again, X and Y may be either L or R) will require rotation to remove the imbalance.

Handling XYr Imbalances (Color Changes)
Whenever the color of a node is changed, violation of property #3 may propagate two levels up the tree. When this occurs, the tree will need to be reclassified at the new level, meaning that the new u node is the node which formerly was gu, and apply the transformations again.

Figure 6 illustrates an LLr imbalance and the color change that will reclassify the tree into a red-black tree.

(a)

(b)

Figure 6 – (a) LLr imbalance upon inserting u. (b) Removing LLr imbalance via color change.

In Figure 6(a) the nodes uL, uR, puR, and guR are subtrees of nodes u, u, pu, and gu respectively. Although they are represented in the figure as external nodes, they may well be valid subtrees.

Both LLr and LRr color changes require a change in the color of pu and the other child of gu from red to black. Additionally, the color of gu must change from black to red provided that gu is not the root of the tree. Since the color change is not done when gu is the root, the number of black nodes on all root-to-external paths increases by 1 when gu is the root of the red-black tree.

If changing the color of gu to red causes an imbalance, gu becomes the new u node and its parent becomes the new pu, its grandparent becomes the new gu, and the rebalance would need to continue. If gu is the root or it the color change does not cause a violation of property #3 at gu, then you are done and you once again have a red-black tree. This is illustrated in Figure 7.

Figure 7 – (a) LRr imbalance upon inserting u. (b) Removing LRr imbalance via color change.

Handling XYb Imbalances (Rotations)
Imbalances of type XYb, where XY can be L or R, require rotations within the tree to remove the imbalance. Color change alone will not be sufficient to remove these types of imbalances.

Figure 8 illustrates the rotation concept for red-black trees, however, this should look very familiar since the basic technique is the same as that employed in AVL trees after an insertion has unbalanced the tree. The pointer changes are the same (if you are thinking in terms of the alternate definition). In the case of an LLb rotation, for example, in addition to the pointer changes, the color of gu must be changed from black to red and the color of pu from red to black. This is illustrated in Figure 8. In Figure 8, the newly inserted node u is the root of puL. So that you can easily compare the techniques, Figure 9 illustrates the corresponding rotation in an AVL tree.

Figure 8 – (a) LLb imbalance upon inserting u. (b) Removing LLb imbalance via rotation.

Figure 9 – (a) AVL tree with insertion of new node u causing imbalance (b) balanced version
Similarly, an LRb rotation is shown in Figure 10, with the AVL version shown in Figure 11.

Figure 10 – (a) LRb imbalance upon inserting u. (b) Removing LRb imbalance via double rotation.

Figure 11 – (a) AVL tree with imbalance upon inserting u. (b) ALV tree after double rotation.

Notice in Figure 10 that after the rotations have occurred the number of black nodes (or pointers) on all root-to-external-node paths is unchanged. Further, the root of the involved subtree (gu before the rotation and pu after the rotation) is black following the rotation and therefore, two consecutive red nodes cannot exist on a path from the root of the entire tree to the new pu. Consequently, no further rebalancing work is required. Thus, a rotation (preceded by potentially O(log n) color changes is sufficient to restore balance following an insertion!

Example
Consider the red-black tree depicted with the extended format shown in Figure 12. Notice that all root-to-external-node paths have three black nodes (including the external node) and two black pointers.

Figure 12. A red-black tree.

Now suppose that we insert a new node containing the value 70 into the tree of Figure 12. In keeping with the searching tree property (property #1) of red-black trees; the new node must be inserted as a left child of node 80. The external node is replaced by a valid node containing the new value. Since the insertion is done into a non-empty tree, the new node is automatically assigned a color of red. Notice that this insertion does not violate property #3, and no further action is required. The result of the insertion of the new node containing 70 is illustrated in Figure 13.

Figure 13. Insertion of node containing 70.

Now, lets’ assume that a node containing the value 60 is inserted into the tree of Figure 13. The resulting tree is shown in Figure 14. Once again, the new node will be inserted as a left child of node 70, it will be red as will the pointer to it. The new node 60 is the u node, its parent 70 is pu node, and its grandparent 80 is gu. Since both pu and u are red a violation of property #3 (two red node sequence)has occurred and an LLr type imbalance has occurred as a result of the insert (since pu is the left child of gu, u is the left child of pu, and the right child of gu is red) . An LLr type color change (see Figure 6) will remedy this problem and its result is illustrated in Figure 15.

Figure 14. Insertion of node containing 60 into tree of Figure 12. Note violation of property #3 (two red nodes on a path from the root to an external node).

Figure 15. Tree of Figure 14 after color changing.

At this point the red-black tree shown in Figure 15 is valid and all four properties of red-black trees hold on this tree. Notice that u, pu and gu have moved up two levels in the tree. The node containing 80 is now u, the root becomes pu and gu is null. Since there is no gu node, it is not possible to violate property #3 at this location and for this reason, the tree is balanced. Notice too, that all root-to-external-node paths have exactly two black nodes.

Now, let’s assume that we insert a new node containing the value 65 into the tree shown in Figure 15. This produces the imbalanced tree shown in Figure 16.

Figure 16. Tree of Figure 15 immediately after insertion of new node containing 65.

Again, let u be the new node containing 65, so its parent pu contains 60, and its grandparent gu contains 70. This insertion has caused an LRb imbalance that will require a double rotation to remedy. This type of rotation was illustrated in Figures 10 and 11. In Figure 16, this will require first the left rotation of 65 about 60, followed by the right rotation of 65 (in its new location) about 70. This double rotation is illustrated in two steps in Figure 17 below.

Figure 17. Tree of Figure 16 showing (a) left rotation and (b) right rotation to balance.

Notice that once the double rotation is performed in the tree and the color changes are made, the tree in Figure 17(b) is a valid red-black tree.

For the final part of this example, let’s assume that we now insert a new node containing the value 62 into the red-black tree of Figure 17(b). This will produce an LRr imbalance that will require a color change to remedy. The imbalanced tree illustrating this insertion is shown in Figure 18.

Figure 18. Red-black tree of Figure 17 immediately after inserting 62.

Notice that the tree of Figure 18 is imbalanced since there is a root-to-external-node path with two consecutive red nodes. The imbalance is LRr since pu is the left child of gu, the new node u is the right child of pu and the other child of gu is red. Therefore, we have an LRr imbalance and the color changes may propagate up the tree (two levels maximum). In an LRr color change, both the color of pu and the right child of gu will change from red to black. In addition the color of gu will change from black to red since gu is not the root of the tree.

This color change is illustrated in Figure 19. Notice that the tree of Figure 19 is not balanced since it violates property #3, in that there is a root-to-external-node path which contains two consecutive red nodes. This means that the color change has caused an RLb imbalance which must be removed via an RLb rotation(double rotation). This rotation is shown in Figures 20 and 21. The final balanced red-black tree for this example is shown in Figure 21.

Figure 19. Red-black tree of Figure 18 after first color change – result violates property #3.

Figure 20. Right rotation of 65 about 80 (first part of RLb rotation)

Figure 21. Final red-black tree after left rotation of 65 about 50 in Figure 19.

Deletion from a Red-Black Tree
The basic deletion from a red-black tree is handled like any other search tree. However, remedial color changes and a single rotation may be required to rebalance the tree after the deletion occurs depending upon the original structure of the red-black tree.

Depending upon the structure of the tree (which determines the color of the node in a red-black tree) deletion may be trivial or it may require recoloring and/or a rotation to restore the balance. Consider the following cases shown by example in Figure 22.

Figure 22. A red-black tree.

In all the examples below, let y denote the node that takes the place of the deleted node in the resulting tree. Let’s assume that we delete the node containing 70 from the tree in Figure 22. Since this node is a red node, its deletion cannot affect the number of black nodes that exist on any root-to-external-node path in the tree. Therefore, its deletion is trivial and no additional work is required. Figure 23 illustrates this resulting tree, notice that it is a valid red-black tree.

Figure 23. Red-black tree of Figure 22 after deletion of red node 70.

Note: If the colors of the pointers are represented, then the color of 90’s left child must also change as indicated in Figure 23. If only node colors are represented the trivial case results.

As a second example of deletion, let’s assume that the node containing 90 is deleted from the tree in Figure 22. In this case the node which is deleted is a black node and thus the number of black nodes (and pointers) on paths from the root-to-external-nodes in the left subtree of 90 is one less than before the deletion. Therefore, in the left subtree of 90, property #4 has been violated since the number of black nodes on all root-to-external-node paths in the tree is no longer the same.

Notice that the root of the left subtree of 90 must be recolored after 90 is deleted. So the order is: (1) delete node containing 90 and (2) the right-child pointer of the parent of 90 is set to point to the left subtree of 90. This is shown in Figure 24.

Figure 24. The tree of Figure 22 after the deletion of node containing 90.

Finally, let’s delete the node containing 65 from the original tree shown in Figure 22. In this case the deleted node is red yet property #4 will not be violated by its deletion as was the case in the previous deletion.

In this case the node y is the rightmost node in the left subtree of the node to be deleted. This is to ensure that property #1 holds (the resulting tree must be a search tree). The resulting tree is shown in Figure 25.

Figure 25. Resulting tree following deletion of node 65 from tree of Figure 22.

When property #3 is violated through a deletion, the subtree rooted at y is one black node (equivalently one black pointer) deficient; therefore, the number of black nodes (and hence pointers as well) on root-to-external-node paths in the subtree rooted at y is one less than on paths to other external nodes. As was the case for insertion, this defines an imbalance in a red-black tree.

Classification of imbalances in red-black trees due to deletion is similar in nature to the classification of imbalances caused through insertion, however, there are different cases to consider. For the subtree rooted at y, we need to identify its parent py and its sibling v. When y is the right child of py, the imbalance is of type R, otherwise, it is of type L. Notice that since y is one black node deficient, v cannot be an external node. If v is a black node the imbalance is of type Lb or Rb. When v is red, the imbalance is of type Lr or Rr. We’ll consider each case separately.

Handling Xb Imbalances
Handling Xb imbalances (where X is either R or L) requires a further subdivision into 3 categories based upon the number of children of v which are red. We’ll consider only Rb cases as Lb cases are symmetric.

Type Rb0 [color change]: y is a right child of py, v is black, and v has 0 red children.

Type RB1 [rotation]: y is a right child of py, v is black, and v has 1 red child.

Type RB2 [rotation]: y is a right child of py, v is black, and v has 2 red children.

Type Rb0 Imbalance
When the imbalance is of type Rb0, a color change is required. Figure 26 shows the two possibilities for the color pf py. If py was black prior to the color change, then the color change causes the subtree rooted at y ot be one black node deficient. Also notice in Figure 26(b) that the number of black nodes on paths to external nodes in v is one less than before the color change. Therefore, regardless of whether the path goes to an external node in v or in y, following the color change, it is one black node deficient. If py is the root of the entire red-black tree, nothing more will need to be done. If py is not the root of the entire red-black tree, then py becomes the new y; the imbalance at y is reclassified and the appropriate action taken from that point based upon the new type of imbalance that occurs at y.

When py was red before the color change, the number of black nodes on paths to external nodes in y increases by 1 but is unchanged for those in v. The entire tree becomes balanced and no further work is required.

Figure 26. (a) The 2 possible Rb0 imbalances, (b) Rb0 color change to rebalance.

Type Rb1 and Rb2 Imbalances
Rotations are required when the imbalance is either type Rb1 or Rb2. The different rotations that are required are illustrated in Figure 27. A thatched node indicates a node that may be either red or black and is unchanged by rotation.

Figure 28. (a) – (d) Rb1 rotations, (e) – (f) Rb2 rotations

Figure 28(b) the root of the subtree that is shown has the same color before and after the rotation (it is a thatched node). Thus, the color of v in Figure 28(b) is the same color as py in Figure 28(a). You should verify for yourself that following the rotation the number of black nodes on paths from the root-to-external-nodes in subtree y is increased by 1 and unchanged on paths from the root to the remaining external nodes. As a result, the rotation rebalances the tree and no further work is required.

For Lb0, Lb1, and Lb2 imbalances, which are symmetric to the Rb0, Rb1, and Rb2 cases, similar diagrams can be constructed where all the action is in the left subtree. For the sake of space and timeI did not draw these, but you might want to give them a try.

Handling Xr Imbalances
Handling Xr imbalances (where again, X is either L or R and the two cases are symmetric) again requires further subdivision into three subtypes depending the number of red children that v’s right child has. All three cases are handled by rotations. Type Rr imbalances occur when y is one black node deficient, v is red, both vL and vR have at least one black node that is not an external node; therefore, both children of v are internal nodes.

Type Rr0: y is a right child of py, v is red, and v has 0 red children.

Type Rr1: y is a right child of py, v is red, and v has 1 red child.
Type Rr2: y is a right child of py, v is red, and v has 2 red children.

Type Rr0 Imbalances
Figure 29 illustrates a type Rr0 imbalance and the rotation required to rebalance the tree.

Figure 29. (a) Rr0 imbalance, (b) Rr0 rotation to rebalance.

Handling Rr1 and Rr2 Imbalances
Figure 30 illustrates the possibilities that exist for Rr1 and Rr2 imbalances and the rotations that will rebalance the tree after the deletion. As before the Lr1 and Lr2 cases are symmetric and not illustrated in these notes.

Figure 30. (a) – (d) Rr1 rotations, (e) – (f) Rr2 rotations

Example
Given the initial red-black tree shown in Figure 31.

Figure 30. Initial red-black tree.

Suppose that we delete the node containing 90 from this tree. The node to be deleted is not the root of the tree and it is a black node, so an imbalance is created (property #4 is violated). This tree is shown in Figure 31.

Figure 31. Red-black tree of Figure 30 after deletion of node containing 90. Unbalanced due to property #4 violation.

The imbalance is of type Rb0, and a color change is performed that will result in the tree of Figure 32. Since py was originally a red node, this color change rebalances the tree and we are done.

Figure 32. Tree of Figure 31 after the Rb0 color change has occurred. Tree balanced.

Now suppose that from the red-black tree shown in Figure 32 we delete the node containing 62. Since the node containing 62 was a red node, the tree remains balanced and no additional work is required. This tree is shown in Figure 33.

Figure 33. Tree of Figure 31 after deletion of red node containing 62. Tree balanced.

Example
To show different examples of how deletion is handled let’s change initial red-black trees and assume that our tree looks like the one shown in Figure 34.

Figure 34. An initial red-black tree.

From the tree shown in Figure 34 assume that the node containing 70 is deleted. In this case, the node to be deleted is a black node and it is not the root of the entire tree, so simply deleting this node causes a violation of property #4 and an imbalance in the tree. This tree is shown in Figure 35.

Figure 35. Red-black tree of Figure 34 after deletion of 70. Imbalance results.

This imbalance is of type Rr1 (y is a right child of py, v is red, and the right child w of v has 1 red child which is itself the right child of w). Following the Rr1 rotation the tree is balanced and no further work is required. This final tree is shown in Figure 36.

Figure 36. Tree of Figure 35 after Rr1 rotation has occurred. Tree is balanced.

Implementation Considerations
The remedial actions required to rectify the imbalances that can occur in a red-black tree through insertion and deletion require us to move back and forth on the path taken from the root to the point of the insertion or deletion. This backward movement is easiest to do if each node contains a link to its parent. Otherwise, the use of a stack of pointers will be required to move backward in the tree. The stack technique requires less space than the additional pointer field in each tree node, however, empirical results have shown that additional pointer scheme typically runs faster.

Summary
Both AVL trees and red-black trees use the concept of rotation to maintain balance. AVL tree operations require at most 1 rotation following an insert and at most O(log n) rotations following a deletion. However, red-black tree operations require only a single rotation (although it may be a double rotation) following either an insertion or deletion. This difference may not be significant in most applications where a rotation takes ((1) time. However, in advanced applications where a rotation cannot be performed in constant time, this difference can become important. One such advanced application is that of balanced priority search trees. A balanced priority search tree is used to represent elements with two-dimensional keys. In such cases the key is a pair (x, y) and the search tree is simultaneously a min (or max) tree on y and a search tree on x. When rotations are performed in such a tree, each has a cost of O(log n). Since a red-black tree performs a single rotation after either an insertion or deletion, the overall time for either remains at O(log n), however, if an AVL tree is utilized the overall time for deletion increases to O(log2 n).
Advanced Tree Structures – Red-Black Trees (5)

50

6580

62

50

u

6580

8065

62

60

70

90

10

70

8065

6580

62

60

60

70

90

10

50

pu

pu

62

60

65

70

90

80

10

50

gu

u

pu

gu

u

62

60

65

70

90

80

10

50

(b)

60

(a)

65

70

90

80

10

pu

60

50

u

65

70

90

80

10

50

gu

65

pu

u

60

70

90

80

10

pu

u

50

60

70

90

80

10

50

pu

u

gu

60

70

90

80

10

50

70

90

80

10

50

90

80

10

50

uL

uR

u

puL

puL

uL

uR

guR

(a)

(b)

guR

gu

pu

pu

gu

u

(a)

(b)

uR

uL

u

puL

guR

pu

gu

guR

puL

uR

(a)

(b)

u

u/0

pu

gu

uL

gu

(a)

(b)

puL

pu

gu/-2

puR

guR

pu

guR

puR

pu/-1

puL

uL

pu

gu

gu

(a)

(b)

uL

uR

u

puL

guR

pu

guR

puL

uR

uL

u

pu

gu

gu

(b)

(a)

guR

puR

uR

uL

u

pu

gu

u

pu

gu

guR

puR

uR

uL

85

62

5

10

60

70

80

50

65

55

62

60

5

10

70

80

50

65

55

62

5

10

60

70

80

50

65

62

5

10

60

70

80

50

65

(b)

(a)

f

e

d

b

a

c

10

90

90

10

y

60

62

6580

50

70

10

y

60

62

6580

50

Property #4 (number of black nodes on all root-to-external-node paths is the same) will be violated by deletion only when the deleted node is black and y is not the root of the resulting tree.

90

10

70

60

y

6280

50

py

v

vL

y

vR

vR

y

vL

v

py

vR

y

vL

v

py

(a)

(b)

vR

y

vL

v

(a)

wR

y

vL

v

py

py

w

wL

(c)

wL

w

py

wR

y

vL

v

(e)

y

v

vR

py

v

vL

(b)

wL

(d)

w

wR

y

vL

v

py

py

wL

w

wR

y

vL

v

(f)

py

vL

y

vR

py

v

vL

y

vR

wL

w

xR

wR

y

(b)

(a)

v

v

vL

y

wR

py

vL

(b)

(a)

w

v

wL

x

xR

y

vL

py

v

vL

y

x

xL

py

w

wL

(d)

(c)

xL

w

v

wL

x

vL

py

xR

y

xR

xL

x

wL

w

py

vL

(f)

(e)

w

wL

py

xL

v

y

50

6580

8065

62

60

70

10

90

50

6580

8065

62

60

70

10

y

py

v

vR

70

70

50

6580

50

6580

8065

62

60

10

8065

50

60

10

50

6580

7065

62

60

10

6580

py

62

60

10

y

v

w

x

62

60

50

6580

10

� An equivalent definition arises from assigning colors to the references (pointers) between a node and its children. The pointer from a parent to a black child is black and to a red child is red. Additionally, (1) pointers from an internal node to an external node are black, (2) no root-to-external-node path has two consecutive red references, and (3) all root-to-external-paths have the same number of black references.

Red-Black Trees - 6

