
Title: “Program Assignment 2: Analyzing Performance of B-Tree of Order 6”

Points: 100 points – 60pts for coded portion, 40 points for written analysis

Due Date: In class Wednesday July 10, 2002

Objectives: (1) To implement in Java, a B-tree of order 6 along with supporting methods to insert, delete and search for values within the B-tree, and (2) produce empirical results to gauge the amount of space utilization or waste thereof within the B-tree structure.

Description: Create a Java program that implements a B-tree of order six and then determine for a randomly generated “access sequence” to the B-tree the amount of “wasted space” within the structure.

Technique:

1. Create the necessary class structures and accompanying methods to successfully construct and manipulate a B-tree of order six.

2. Generate an “access sequence” which, starting from an empty tree will insert elements into the B-tree and delete elements. Note that every insertion and deletion will require a search of the existing tree. In the case of a successful search (meaning that the value is already in the tree) no action is taken as duplicate key values are not allowed. Similarly, in the case of an unsuccessful search for a deletion, no action is taken. Otherwise, for insertion an unsuccessful search will cause an insertion to occur and for deletion a successful search will delete the key value from the tree.

3. The length of the access sequence is a parameter that you will need to determine on an individual basis. I would suggest starting quite small (use the examples in the class notes for testing and you will be able to determine if your code is working correctly or not) and moving up when you are sure your code is correct. As an upper limit a few hundred data values (300-400) should be more than enough to see good results relating to the space utilization in the tree.

4. Once you have completed the access sequence you will have a B-tree of order six in whatever state that access sequence has left the tree. At this point determine exactly how much wasted space (in terms of key values only don’t consider reference pointers) exists inside the structure. Any technique that you want to use to do this is fine, but I would suggest maintaining in each node of the tree a counter keyTally that simply stores the number of key values in the node. Simple traversal of every node summing the keyTally values along with maintaining a count of the total number of nodes in the tree will give you the number you’re looking for.

References:

Notes: Lecture Notes for M-way search trees (B-trees)

Restrictions:

Your source file shall begin with comments containing the following information:

/* Name:
 COP 3530 – Summer 2002
 Assignment title:

 Date:

*/

Input Specification: Internal to the program

Output Specification: Your program should produce the numbers necessary to determine the percentage of the B-tree structure which is not utilized. What specific values are produced and how they are produced is left entirely up to you.

Deliverables:

(1) Source code file on a floppy disk with the following information: Your name, COP 3530, Assignment title, and Date.

(2) The write-up for this assignment described in other parts of this document.

(3) Place hard copies of (1) and (2) along with your disk in a large envelope, so that you do not need to fold the printouts or your report. CLEARLY, label the envelope with the following information: your name, COP 3530, Assignment #2, and the date.

Write-up: A complete write-up is one of the deliverables for this assignment. A separate document (see the course web-site) describes the make-up of this write-up. Along with the items described in that separate document you will need to include the following in your report:

1. Consider what would happen if the “access sequence” were skewed to (a) favor insertion over deletion or (b) favor deletion over insertion. In other words, for (a) suppose there is a non-uniform distribution of insertions and deletions which tends to make the expected number of insertions exceed the expected number of deletions. and vice versa for (b).

2. Determine, based upon your results, the amount of wasted space in the B-tree that you have generated. Does it exceed the 50% worst case? How close to the expected value of 69%?

Additional Comments:

· A node in a B-tree is typically implemented as a class containing an array of m-1 cells for key values, and m-cell array of references to other nodes, and other information necessary for maintaining the structure. An example is shown below, you can change this in whatever ways you see fit, its simply here as a reference.

· The search algorithm for a B-tree is shown below in Java.

· Since the class notes illustrate the insertion and deletion techniques graphically rather than algorithmically I’ve included an algorithm for both which are shown below; you’ll need to put them into Java.

COP 3530 – Programming Assignment #2 – Summer 2002

class BtreeNode

{

 int m = 6; //for an order 6 tree

 boolean leaf = true;

 int keyTally = 1;

 int keys[] = new int[m-1];

 BtreeNode references[] = new BtreeNode[m];

 BtreeNode(int key) //constructor

 {

 keys[0] = key;

 for (int i = 0; i < m; i++)

	 references[i] = null;

 }

}

public BtreeNode BtreeSearch(int key)

{

 return BtreeSearch(key, root);

}

protected BtreeNode BtreeSearch(int key, BtreeNode node)

{

 if (node != null){

 	int i = 1;

	for (; i <= node.keyTally && node.keys[i-1] < key; i++);

	if (i > node.keyTally || node.keys[i-1] > key)

	 return BtreeSearch(key, node.references[i-1]);

	else return node;

 }

 else return null;

}

	

BtreeInsert (K)

 find a lead node to insert K

 while (true)

	find a proper position in array keys for K;

	if node is not full

		insert K and increment keyTally;

		return;

	else 	split node into node1 and node2; //node1 = node, node2 is a new node;

		distribute keys and references evenly between node1 and node2;

		properly initialize the keyTally in both node1 and node2;

		K = the last key of node1;

		if node was the root

			create a new root as the parent of node1 and node2;

			put K and references to node1 and node2 in the root;

			set the keyTally of the new root to 1;

			return;

		else node = its parent; // now process it parent

BtreeDelete (K)

 node = BtreeSearch(K, root);

 if (node !- null)

 if node is not a leaf

	find a leaf with the closest successor S of K; //use right most node in left subtree

	copy S over K in node;

 node = the leaf containing S;

 delete S from node;

 else delete K from node;

 while (true)

 if node does not underflow

	return;

	else if there is a sibling of node with enough keys redistribute the keys between node and

			its siblings;

	 return;

	else if node’s parent is the root

	 if the parent has only one key

		merge node, its siblings, and the parent to form a new root;

	 else merge node and its siblings;

	 return;

	else merge node and its siblings;

	 node = its parent; //now process the node’s parent (cascading cases)

Page 1

