
Title: “Program Assignment 1: Analyzing Performance of Self-Organizing Lists”

Points: 100 points – 60pts for coded portion, 40 points for written analysis

Due Date: In class Wednesday June 12, 2002

Objectives: (1) To implement in Java, a variety of self-organizing list structures, and (2) produce empirical results to gauge the behavior of the self-organizing variants when compared to a standard linear list.

Description: Create a Java program that implements three different variants of the self-organizing list structure (namely move-to-front, count, and transpose) as well as a standard non-self-organizing list and determine for a set of five randomly generated “access sequences” the number of comparisons required for each search in the variants and compare it with the number of comparisons required in the standard list.

Technique:

1. Create a standard linked list which contains 26 nodes with each node containing a letter from the English alphabet. Call this list standard. The nodes of the standard list can be entered in alphabetic order. So the standard list will look like:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2. Copy the standard list created in step 1 into three other lists called: movetofront, count, and transpose. So initially you will have 4 identical lists.

3. Generate a 250 character, randomly generated, “access sequence” which will simulate the searching that will occur within the lists. For each character in the access sequence, search for this character in each of the 4 lists and for each search record the number of comparisons that were made before the character was found. Remember to modify each list (except for the standard) after the search based upon its self-organizing protocol.

4. For each character (A…Z) record the total number of comparisons required by the access sequence.

5. At the end of the access sequence, print the characters in the order that they now appear in each of the list variants. Use the same format as shown in step 1 above for this display.

6. Repeat steps 1 through 4 four more times (a total of 5 different access sequences).

7. In your write-up tabularize the comparison data produced by your program to determine if the self-organizing list structure is superior to the standard list structure. Is it possible from your data to determine a difference between the self-organizing variants? What conclusions can you reach based upon your results?

References:

Notes: Lecture Notes for Day 3

Restrictions:

Your source file shall begin with comments containing the following information:

/* Name:
 COP 3530 – Summer 2002
 Assignment title:

 Date:

*/

Input Specification: Internal to the program

Output Specification: For each alphabetic character, produce a count of the total number of comparisons required to find this character over the five different access sequences that are generated

Deliverables:

(1) Source code file on a floppy disk with the following information: Your name, COP 3530, Assignment title, and Date.

(2) The write-up for this assignment described in other parts of this document.

(3) Place hard copies of (1) and (2) along with your disk in a large envelope, so that you do not need to fold the printouts or your report. CLEARLY, label the envelope with the following information: your name, COP 3530, Assignment #1, and the date.

Write-up: A complete write-up is one of the deliverables for this assignment. A separate document (see the course web-site) describes the make-up of this write-up. Along with the items described in that separate document you will need to include the following in your report:

1. For each of the five access sequences, produce a table containing the total number of comparisons required to find each character in all four of the list structures.

2. Determine, if possible, based upon your results which of the list variants produces the best search times based upon total number of comparisons required.

Additional Information:

1. Rather than have a bunch of auxiliary arrays or other structures, simply add a field to each list node to contain a counter which keeps track of the number of comparisons needed to find the character during a particular access sequence. Initialize it to 0 and reset it when starting the next access sequence.

2. The count technique for self-organization already requires an additional field in each node so don’t get the two confused. The count method needs a field to record the number of times the character has been accessed (searched for) and not the number of comparisons needed to find it.

COP 3530 – Programming Assignment #1 – Summer 2002

Page 2

