
Introduction
An m x n matrix (table) is said to be sparse if “many” of its elements are zero (empty).  A matrix which is not sparse is dense.  The boundary between a dense and a sparse matrix is not precisely defined.  Diagonal and tridiagonal  n  x n matrices are sparse since they have O(n) nonzero terms and O(n2) zero terms.


Is an n x n triangular (either upper or lower) matrix sparse?  A triangular matrix will have at least n(n-1)/2 zero terms and at most n(n+1)/2 nonzero terms.  For the representation schemes that we are about to examine to be competitive over the standard two-dimensional array representation, it will turn out that the number of nonzero terms will need to be less than n2/3 and in some cases less than n2/5.  Thus, in the context of the representation schemes we are about to see, a triangular matrix is considered to be dense rather than sparse.

Sparse matrices which are either diagonal or tridiagonal have sufficient structure in their nonzero regions to allow fairly simple representation schemes to be developed whose space requirements equal the size of the nonzero region.  We are not concerned with these simple cases, rather our focus will be on sparse matrices with irregular or unstructured nonzero regions.

Irregular Sparse Matrices
An irregular sparse matrix has a nonzero region in which no discernable pattern exists.  Without regularity in the nonzero region it is highly unlikely that a standard representation, such as a two-dimensional array, would provide an efficient representation of the matrix.  On the other hand, if there is a high degree of regularity or structure in the nonzero region, then an efficient representation structure of the nonzero region can typically be developed using standard linked lists that will require space equal in size to the nonzero region.  We will not examine these highly regular sparse matrices, our concern is finding a suitable representation scheme for an irregular sparse matrix.  Consider the following irregular 4 x 8 sparse matrix.

	0
	0
	0
	2
	0
	0
	1
	0

	0
	6
	0
	0
	7
	0
	0
	3

	0
	0
	0
	9
	0
	8
	0
	0

	0
	4
	5
	0
	0
	0
	0
	0



Table 1 – Irregular 4 x 8 Sparse Matrix

Notice in the irregular sparse matrix shown in Table 1 of the 32 total elements in the matrix that fully 23 or 71.8% of the cells have zero value.  Clearly this is a sparse matrix.  Further notice that there appears to be no obvious regularity to where the nonzero elements occur.  

The nonzero elements of the sparse matrix in Table 1can be mapped into a linear list.  If this list is organized in row-major order we would have the following:  2, 1, 6, 7, 3, 9, 8, 4, 5.  To be able to reconstruct the matrix structure, the original row and column must be recorded for each nonzero element in the matrix.  The linear list would contain nodes that look like the one shown below:






Figure 1 – Node for representation of the sparse matrix











Figure 2 – Linear list representation of sparse matrix of Table 1

Notice that the linked list (linear list) representation of the sparse matrix, while efficient in terms of space when compared with a two-dimensional array will not be particularly efficient for insertion and retrieval operations (although it is better than if a two-dimensional array is used).  

Question to think about:  Do you think a skip list would improve this implementation enough to warrant the additional overhead?  

The sparse matrix representation illustrated in Figure 2 is a fairly common technique for representing sparse matrices and provides fairly efficient behavior for algorithms such as matrix transpose, addition, and multiplication.  

	0
	0
	0
	0

	0
	6
	0
	4

	0
	0
	0
	5

	2
	0
	9
	0

	0
	7
	0
	0

	0
	0
	8
	0

	1
	0
	0
	0

	0
	3
	0
	0


Table 2 – Transpose of the matrix of shown in Table 1

Notice how easy it is to transpose the sparse matrix of Table 1 when it is represented in the linear list format shown in Figure 2.  The transposed matrix of Table 2 is shown in its linear list representation in Figure 3.  What was done to this list to produce this result?  What is the time complexity of this task?



Figure 3 – Linear list representation of the transpose of the list represented in Figure 2

Using the linear list to represent the sparse matrix provided us a very fast way to perform the transpose of the matrix, but at what cost to the retrieval process?  Notice that the representation of the transposed sparse matrix is no longer ordered in row-major fashion, but is now ordered in column-major fashion!

Our concern with the representation in Figure 2 is that access operations into the sparse matrix are not efficient for random access into the matrix.  Any application performing predominantly access (look-up) operations into the sparse matrix will not perform with anywhere near optimal behavior using this representation.  What we need is a better representation when considering random access into the sparse matrix as the dominant operation.  To illustrate the access problem this representation presents, consider the sparse matrix addition illustrated below:

	0
	0
	0
	0

	4
	0
	2
	0

	0
	1
	0
	0

	0
	0
	2
	0

	0
	0
	0
	4


Matrix A

	0
	0
	0
	0

	4
	0
	0
	1

	0
	0
	3
	0

	0
	0
	2
	0

	0
	0
	0
	1


Matrix B

The result of A + B is matrix C shown below, recall that matrix addition is defined only when the two operand matrices have the same dimensions and is defined as C(i,j) = A(i,j) + B(i,j);  1( i ( m, 1 ( j ( n where A and B are m x n matrices:

	0
	0
	0
	0

	8
	0
	2
	1

	0
	1
	3
	0

	0
	0
	4
	0

	0
	0
	0
	5


Result matrix of A + B

Consider the representation of the matrices A and B in linear list format shown below:



Matrix A



Matrix B



Matrix C = A + B

Think about the operational aspects of performing the addition of matrices A and B using the linear list representation.   Since the two matrices are stored in a row-major fashion a simple iteration through each list will suffice for the addition operation.  For example, beginning in matrix A, we find the first nonzero element to be in position (2,1), this too happens to be the first nonzero element in matrix B, so this sum is computed an stored in the first element of the list which represents the sum.  Advancing iterators in both the lists we would find that the next nonzero element in A is in position (2,3), but there is no corresponding element in B since the iterator in B is on a node which corresponds to position (2,4).  Thus, a single pass through each list will produce the sum of the two sparse matrices.   Once again, we can see that this is a fairly efficient way in which to produce the sum of two sparse matrices.  Multiplication is only slightly more difficult, try it yourself to see.

There is some possibility that the addition (or multiplication) of two sparse matrices may produce a dense matrix, but we won’t worry about that case here as we are only concerned with the representation of irregular sparse matrices.

It turns out that the representation we desire does not represent a major change from what we have seen above.   The representation scheme that will be the structure of choice for representing sparse matrices when random access is the dominant operational activity is a representation using many linear lists.  Notice that none of the operations of transpose, addition, or multiplication required a truly random access to the matrix (although multiplication was getting there) and this is why the single linear list representation was reasonably efficient.  However, for truly random searches the single linear list will not be efficient enough and a more suitable representation will be found in the multiple linear list representation.  Shown below is a multiple linear list implementation of the irregular sparse matrix shown in Table 1.

          















Figure 4 – Multiple Linear List Representation of Irregular Sparse Matrix

Figure 4 illustrates a multiple linear list representation of the irregular sparse matrix shown in Table1.  The linear list across the top of the diagram represents the columns of the matrix while the linear list farthest to the left represents the rows of the matrix.  The multiple lists in the interior of the diagram illustrate the nonzero elements of the sparse matrix.  Notice that each element participates in both a row and column list.  Thus access to an element may be either through its row or column address.

Notice that the transpose of the matrix from Table 1 already exists in the representation of Figure 4.  Simply interchange the row and column lists and you have the transpose matrix!  This takes O(1) time!  

Toeplitz Matrices
An nxn matrix X is a Toeplitz matrix iff X(i,j ) = X(i-1, j-1) for all i and j where i >1 and j > 1.  Figure 5 illustrates a 4x4 Toeplitz matrix.

	6
	2
	4
	5

	1
	6
	2
	4

	3
	1
	6
	2

	8
	3
	1
	6


Figure 5 – A 4x4 Toeplitz Matrix

A Toeplitz matrix can be represented by a sparse matrix.  The reason for this is that the number of distinct elements in a Toeplitz matrix is at most 2n –1.  Recall that the definition given at the beginning of these notes for a sparse matrix indicated that a sparse matrix contained O(n) nonzero elements.  In the case of a Toeplitz matrix rather than nonzero elements we need only to represent the distinct elements, that the Toeplitz matrix can be represented as a sparse matrix.  Figure 6 illustrates the linear list implementation (in row major order) of the Toeplitz matrix shown in Figure 5.


Figure 6 – Linear list representation of the Toeplitz matrix of Figure 5

C-matrices
An nxn C-matrix is one in which all elements other than those in row 1, row n, and column 1 are zero.  A C-matrix contains at most 3n-2 nonzero elements and is thus considered to be a sparse matrix.  Figure 7 illustrates a 6x6 C-matrix.

	4
	3
	8
	1
	2
	6

	5
	0
	0
	0
	0
	0

	8
	0
	0
	0
	0
	0

	2
	0
	0
	0
	0
	0

	4
	0
	0
	0
	0
	0

	3
	5
	2
	8
	22
	3



Figure 7 – A 6x6 C-matrix

Notice that Figure 7 contains exactly 16  nonzero elements which is (3(6) – 2).

As before, this sparse matrix is easily represented using the linear list structure.  

Antidiagonal Matrices
An nxn square matrix X is antidiagonal iff all elements X(i,j ) where i+j ( n+1 are zero.  Figure 8 illustrates a 5x5 antidiagonal matrix.

	0
	0
	0
	0
	4

	0
	0
	0
	2
	0

	0
	0
	8
	0
	0

	0
	3
	0
	0
	0

	5
	0
	0
	0
	0



Figure 8 – A 5x5 Antidiagonal Matrix

An antidiagonal matrix has all the characteristics of a diagonal matrix except that the nonzero elements run opposite to the main diagonal of the matrix.  There are also variants of antidiagonal matrices as there were for the diagonal matrices.  Similar representations are typically employed for all these variations as well.

Advanced List Structures – Sparse Matrices (3)





5





4





5





4





3





4





3





1





4





5





2





3





4





3





3





3





1





4





2





4





1





2





4





4





5





2





3





4





1





2





3





2





3





2





4





1





2





5





4





3





4





4





2





8





3





6





9





3





4





3





2





8





7





2





5





6





2





2





1





1





7





2





1





4





5





3





4





4





2





4





8





6





3





9





4





3





3





8





2





7





5





row





column





data value





1





7





1





2





2





2





2





6





1





4





Definition:  A matrix M is diagonal iff M(i, j) = 0 for i ( j.





Definition: A matrix M is tridiagonal iff M(i, j) = 0 for |i – j| > 1.  





	[Both of these special matrices are special cases of the more general


	 square band matrix in which the non-zero elements are on a band which


	 is centered about the main diagonal.]





Considering matrix M to be a 6 x 6 matrix, for purposes of an example, we have:





2�
0�
0�
0�
0�
0�
�
4�
2�
0�
0�
0�
0�
�
0�
1�
0�
0�
0�
0�
�
1�
3�
1�
0�
0�
0�
�
0�
0�
4�
0�
0�
0�
�
0�
4�
5�
2�
0�
0�
�
0�
0�
0�
6�
0�
0�
�
0�
0�
2�
9�
4�
0�
�
0�
0�
0�
0�
5�
0�
�
0�
0�
0�
6�
3�
3�
�
0�
0�
0�
0�
0�
3�
�
0�
0�
0�
0�
1�
2�
�
Diagonal Matrix				Tridiagonal Matrix











3





3





2





3





2





8





1





2





1





4





2





1





2





3





2





1





2





3





4





1





2





3





4





5





6





7





8





1





6





7





3





9





8





5





4





5





4





1





4





3





1





8





1





4





3





1





3





1





1





2





2





2





1





6





1





1








Sparse Matrices - 8

