
Introduction
In the previous set of notes, the basic techniques for internal hashing and external hashing were explained. For both types, the objective is to achieve key-based access to the data file in O(1) time. For external hashing, this implies a single access to secondary memory. The primary difference between internal hashing and external hashing is that internal hashing techniques assume that the entire searchable address space of the file is contained in main memory during execution, while the external techniques deal with files too large to include entirely in main memory. Therefore, in external hashing some effort is made to match the hashing technique to the underlying hardware. With external hashing the use of “buckets” is a common technique whereby a single hash address is a bucket capable of holding several records. Typically a bucket corresponds to the size of a block, which is the unit of I/O exchange and thus one block has the potential to transfer many records from secondary memory to main memory.

The previous set of notes wound up with an introduction to dynamic hashing. Dynamic hashing is the solution to the problem that static hash structures have when the number of records to be stored in the file either increases very close to or beyond expectations or perhaps decreases to levels much less than anticipated. With a static structure either insufficient space is available leading to unreasonably high collision rates or too much allocated space is unutilized leading to high overhead in terms of space. With static hashed structures the solution to either of these problems is an incredibly time consuming reorganization of the hashed structure. As the file grows in size the reorganization becomes simply too costly to effect and other solutions must be employed. Thus, we entered the realm of external dynamically hashed structures which can expand and contract as required based upon the access patterns to the hashed structure. So far we have examined only the form of dynamic hashing known as dynamic hashing. In this se of notes we’ll continue with a look at two different dynamic hashing techniques called extendible hashing and linear hashing.
Extendible Hashing
Extendable hashing, like dynamic hashing, maintains a directory structure through which access to the main address space is directed. It is the type of this structure that differs; in dynamic hashing the directory structure is essentially a B-tree; in extendible hashing this structure is a single level array of bucket addresses. Figure 1 shows a typical extendible hashing structure.

Figure 1 – Structure of an extendible hashing scheme.

The directory for extendible hashing contains 2d bucket addresses where d is called the global depth of the directory. The first d bits (MSB or high-order bits) of a hash value determine the directory entry, and the address in that directory entry corresponds to the bucket in which the corresponding records are stored. Notice in Figure 1 that there does not need to be a distinct bucket for each of the 2d directory locations. Several directory locations with the same first d-bits for their hash value may contain the same bucket address if all the records that hash to these addresses fit into a single bucket. At each bucket, a local depth is maintained. The local depth specifies the number of bits on which the bucket contents are based. The example in Figure 1 illustrates a scenario when the global depth is 3. Looking at the third bucket down from the top, the first bucket with a local depth of 2 is encountered. Notice in this bucket that only the two most significant bits are used to identify unique contents. Also notice that this bucket is currently full. Another insertion to this bucket will cause it to overflow and thus split into two buckets. This will require the pointers from the directory structure to be adjusted to the new bucket and the redistribution of the existing records into the two buckets both of which will now have a local depth of 3. This is illustrated in Figure 2 which illustrates the changes that occur to the structure of Figure 1 when the new key value 0111110 is inserted into the structure.

The value of d can be increased or decreased by 1, thus doubling or halving the number of entries in the directory. Doubling is required whenever any bucket with local depth = global depth overflows. Similarly, halving occurs whenever all of the buckets do not require the full number bits equal to the global depth. In this case buckets are combined and record redistributed according to d-1 bits which means that pairs of buckets will merge together with all local depths decreasing by one along with the global depth.

As was the case with B-trees, pre-splitting is done in some systems whenever an insertion into a bucket causes that bucket to exceed some pre-defined threshold. Similarly, global contraction does not always occur the instant that all buckets no longer require a full d-bits for identification. Typically, the system would monitor performance and particularly, if insertions tend to dominate deletions over the long haul, global contraction would be delayed. If insertions tend to dominate deletions, the scenario of needing global contraction would most likely signal some local phenomena which defies the normal trends so the system would not react to it unless the local phenomena persisted.

Figure 3 illustrates the scenario that would cause global doubling on the next insertion.

Figure 2 – Extendible hashing scheme of Figure 1 after insertion causing overflow.

Figure 3 – Extendible hashing scheme that will experience global doubling on the next insertion. Note: bucket size reduced to fit on the page.

Figure 4 – Extendible hashing scheme of Figure 3 after global doubling has occurred due to insertion. Assume inserted key value was: 00001111.

Notice in Figure 4 that although the file space in terms of the global depth has doubled but the actual file space has increased only by one bucket, in the bucket in which the original overflow occurred that cause the split which led to the global doubling. Notice too, that even though the potential is there for the actual file space to double (if all the remaining buckets split as well), that the file could undergo another global doubling in as little as two more insertions. Can you tell why? Because in both of the first two buckets, there is room for only one more record before the bucket is full. A second insertion into either of these buckets would cause an overflow in a bucket in which the local depth = global depth which is the criteria for global doubling.

Deletion, like insertion can cause either a local or a global contraction. Contraction at the local level arises as the result of an underflow when either (1) the last record is deleted from a bucket or (2) the number of records in two buckets uniquely identified on d bits can be unique identified on d-1 bits in a single bucket. Contraction at the global level occurs when the global depth is d bits and the records in every bucket can be uniquely identified on d-1 bits.

Linear Hashing
The basic idea behind linear hashing is to provide dynamic expansion and contraction of the hash file address space without requiring the overhead of a directory structure. This is accomplished with the overhead of a single integer and a slightly modified search algorithm. Suppose that the address space starts with M buckets numbered 0, 1, 2, …, M-1 and uses a simple modulo hash function h(K) = K mod M, this hash function is called the initial hash function h0. Collisions are still resolved using chaining. However, when a collision occurs which leads to an overflow in any bucket, the first bucket in the file, bucket 0, is split into two buckets, the original bucket 0 and a new bucket M at the end of the file space. The records originally in bucket 0 are redistributed between bucket 0 and bucket M based upon a new hashing function h1(K) = K mod (2M). A requirement of the new hash function h1 is that any record that hashed to bucket 0 on hash function h0 must hash to either bucket 0 or bucket M on hash function h1.

As further collisions leading to overflow records occur, additional buckets are split in the linear order 1, 2, 3, … . If enough overflow occurs, eventually all the file buckets will be split, so the records in overflow are redistributed into regular buckets using the h1 hash function via a delayed split of their buckets. In this manner we don’t need a directory structure – only a value n to determine how many buckets have been split. For retrieving a record with hash key K, first apply the function h0 to K; if h0(K) < n, use function h1 on K because this indicates that the first bucket has already been split and the records from the first bucket were redistributed between bucket 0 and bucket M by the h1 hash function. Initially, n = 0, indicating that the hash function h0 applies to all buckets; n grows linearly as buckets are split.

When n = M, all the original buckets have been split and the hash function h1 applies to all the records in the file. At this point n is reset to 0, and any new collisions causing bucket overflow lead to the use of a new hashing function h2 where h2(K) = K mod (4M). In general, a sequence of hashing functions hj(K) = K mod (2j M) is used where j = 0, 1, 2, ,,,; a new hashing function hj+1is needed whenever all the buckets 0, 1, …, (2j M)-1 have been split and n is reset to 0.

The search algorithm required for the linear hashing technique is given below:

The following example will clarify the operation of linear hashing.

Example
In order to make things simple, let’s assume that our hash file contains 5 buckets (M = 5), with each bucket having sufficient room for only two records. Let’s further assume that our sequence of hash functions all are modulo functions and the key values are simply integers. Let’s further assume that as we first examine the file, that each bucket is full as shown in the next figure, so that the next insertion will cause the first overflow.

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h0(10) = 0, h0(20) = 0

n = 0

At this point let’s assume that a new record with key value 63 is to be inserted into the hash file. Since this key value maps to bucket 3 and this bucket is full, a collision occurs with the new key value record being placed into an overflow chain. In addition, the first bucket is split into two buckets, bucket 0 and bucket M with record redistribution occurring and n is incremented to 1. This is shown below:

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h1(10) = 5, h1(20) = 0

n = 1, 1 bucket has split

A subsequent insertion of the key value 52 will cause an overflow from bucket 2 and a splitting of bucket 1 as shown below:

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2, h0(52) = 2

h1(41) = 1, h1(31) = 5

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 2, 2 buckets have split

Notice at this point that although two buckets have split, neither have been buckets to which an insertion occurred causing an overflow. The overflowing records which caused buckets 0 and 1 to split are still in their respective overflow chains. Notice too, that the insertion of key value 40 did not cause an overflow and thus no splitting of another bucket. The next insertion that occurs which causes an overflow (notice that this insertion would not be to buckets 0, 1, 5 or 6) will cause the redistribution of records from bucket 2 including those in its overflow chain. This is shown in the next diagram where the assumption is that new key value 54 has been inserted.

h0(74) = 4, h0(64) = 4, h0(54) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 5

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 3, 3 buckets have split

Now let’s assume that time has passed and more insertions have occurred to the file so that all of the original M buckets (0-4) have split. At this point every record in the file has been hashed according to hash function h1 and there are a total of 2M buckets in the file (0-2M-1 or 0-9). This situation is shown in the next figure.

h1(74) = 9, h1(64) = 4, h1(54) = 4

h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 8

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 5

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 5, 5 buckets have split

At this point, the file is twice as large (in terms of buckets) as it was initially and the value of n = M = 5. The hash function h1 applies to every record in the file and thus n is reset to 0 and the next insertion to cause an overflow will result in the next hash function h2 being used to hash the records from bucket 0 into two buckets, 0 and 2M. This is shown in the next figure with the assumption that the key value 23 has been inserted hashing to bucket 3 and thus causing an overflow.

h1(74) = 9, h1(64) = 4, h1(54) = 4

h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 8

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 5

h2(10) = 5, h2(20) = 0, h2(40) = 10

n = 1, 1 bucket has split

End Example
Buckets that have been split can also be merged back together if the loading of the file falls below a certain threshold. In general, the file load L can be defined as:

[image: image1.wmf]N

bfr

r

L

´

=

where r is the current number of file records, bfr is the maximum number of records that can fit into a single bucket, and N is the current number of file buckets.

Blocks are combined linearly and n is decremented appropriately. In fact, the file load is typically used to trigger both splitting and contraction. Using this technique the file load can be kept within a desired range. Splits are triggered when the load exceeds a certain threshold, say 0.9, and contraction is triggered when the file load falls below a certain threshold, say 0.7.

Summary of Dynamic Hashing Techniques
Of the three different types of dynamic hashing techniques that we have seen in this set of notes, linear hashing requires the least amount of overhead to support the dynamic change in address space required of dynamic hashing. While this lack of overhead is commendable, it is unfortunately, not the only criteria by which a dynamic hashing technique can be chosen. Consider for example, with linear hashing, the requirement placed on the hashing function sequence. After the first overflow causing collision, the second hash function in the sequence is required to hash key values that function h0 placed into one bucket into two buckets 0 and M. The nature of the requirements for this hash function almost guarantee that a modulo function must be utilized. The modulo function does not, in general, guarantee very uniform distribution of key values across the address space which tends to develop clustering. Certain modulo functions require the address space (the number of buckets) to be a relatively large prime number to ensure a relatively uniform distribution of key values.

Since both the dynamic hashing and extendible hashing technique require some directory structure, you might think that these techniques are less favorable than linear hashing. Actually, the contrary is true. Both dynamic hashing and extendible hashing are preferred over linear hashing. Some of the reasons for this are historical others relate to the ease of generating the hash function since it is built in to the key values. In reality, the extendible hashing technique is typically implemented on several levels so that an upper level directory is resident in main memory. This mimics the dynamic hashing case where the root node of the B-tree is resident in main memory (in reality, several layers of the B-tree are probably resident in main memory and the disk based portion of the B-tree is also suitably blocked so that one block transfer will load a large portion of the subtree of interest in any search.

Internal hashing is suited to relatively small file structures (entire file fits in main memory at one time), which remain fairly static in size throughout their lifetime. External hashing is suited to relatively large file structures (entire file cannot possibly fit into main memory at one time), which can either remain relatively static in size or may experience significant expansion and contraction in size. For the former situation, any of the techniques which are normally applied to internally hashed files will suffice with the slight adaptations required to optimize for the hardware devices. In the latter case, typically either the dynamic or extendible hashing techniques will be employed to handle the dynamic nature of the size of the address space requirements.
Advanced File Structures – Dynamic Hashing (13)

40

bucket 10

23

22

84

74

63

bucket 9

bucket 8

52

12

bucket 7

31

bucket 6

10

bucket 5

33

54

bucket 4

bucket 3

bucket 2

bucket 1

bucket 0

64

53

72

41

22

84

74

63

bucket 9

bucket 8

address space

bucket 7

12

52

bucket 6

31

bucket 5

10

64

bucket 4

54

address space

53

bucket 3

33

20

72

bucket 2

41

bucket 1

20

bucket 0

40

52

12

bucket 7

address space

bucket 6

31

bucket 5

10

74

bucket 4

64

53

bucket 3

33

63

72

bucket 2

54

41

bucket 1

20

bucket 0

40

31

bucket 6

52

address space

bucket 5

10

74

bucket 4

64

53

bucket 3

33

63

12

bucket 2

72

41

bucket 1

20

bucket 0

40

63

10

bucket 5

31

72

20

31

72

33

64

33

64

bucket 4

bucket 3

bucket 2

bucket 1

bucket 0

address space

74

53

12

41

20

bucket 4

bucket 3

bucket 2

bucket 1

bucket 0

address space

74

53

12

41

10

if n = 0

 then m (hj(K) //m is the hash value of record with key K

 else

 {	m (hj(K);

	if m < n then m (hj+1(K)

 }

search the bucket whose hash value is m (and its overflow, if any);

d=4

0001100

0001000

1111

1110

d=3

1101011

1110001

1111010

1110001

d=3

1100011

1100110

global depth = 3

d=3

1000100

1001100

d=3

0110001

0110110

d=3

1011

1010

1001

1000

1110101

1110001

1111010

1110001

d=3

1100011

1100110

global depth = 3

1100

d=2

1010100

1000111

1011001

0111110

d=3

0101101

0101110

111

110

101

100

011

1101

010

001

000

bucket

key

d=3

0010111

0011000

d=3

0001100

0000110

0001000

buckets

local depth

local depth

buckets

global depth = 3

111

110

101

100

011

010

001

000

bucket

key

1110101

1110001

1111010

1100011

1100110

1010100

1000111

1011001

0110001

0101101

0101110

0110110

0010111

0011000

0001100

0000110

0001000

d=3

d=3

d=3

d=2

d=2

1110001

d=3

d=3

1000100

1001100

1000111

0111110

d=3

0110001

0110110

0111

0110

0101

0100

0011

0010

0001

0000

bucket

key

d=3

0100011

0101101

0101110

0010100

d=3

0010111

0011000

d=4

0000110

0001111

local depth

1011001

1010111

1010100

d=3

0010100

buckets

1000111

0111110

0110001

d=3

0110110

d=3

0100011

0101101

0101110

111

110

101

100

011

010

001

000

bucket

key

d=3

0010111

0011000

d=3

0001100

0000110

0001000

local depth

buckets

d=3

1110001

1111010

1110001

1101011

1100011

d=3

1100110

global depth = 4

d=3

1010100

1010111

1011001

Hashing - 1

_1086959133.unknown

