[image: image1.wmf]i

R

Introduction
In this final set of notes we’ll examine a couple of active research areas which may well determine the future of computing. When we think of a computer we think of modern electronic, digital computers. However, the evolution of the computer has been remarkably fast given the history of man and the term has had many other meanings. For centuries, a computer was a person who did calculations for a living. Computing technology has evolved from counting on fingers to a wide variety of mechanical devices (the abacus (still widely used in parts of the world), adding machines, card readers and sorters), then on to electronic computers of the current era (room-sized mainframes to personal computers on desktops or laptops and embedded systems). There is no reason to think that the evolution of computing technology will stop where it currently is, and there is very good reason to believe that it will continue to evolve at the same rate that occurred in the last three or four decades. Computing with DNA and quantum computing are two of the active research areas that may well shape the future of computing in very dramatic fashion.

Computing with DNA
In 1994 Len Adleman (the A in the RSA public encryption system) showed that an instance of the Hamiltonian path problem in a directed graph with designated start and end vertices, a problem known to be in NP-C (NP-complete) could be solved using DNA. As we have seen from some of our earlier discussions, it seems unlikely that there will be algorithms, in the usual sense, which will solve NP-C problems feasibly (in polynomially bounded time). However, bio-chemical processes work on huge numbers of molecules in parallel, giving the potential for fast solutions. Adleman’s method has evoked an intense area of computing theory research. We’ll look briefly at Adleman’s experiment and even more briefly at the bio-chemical process (I’m neither a chemist nor a biologist) but our ultimate focus will be the algorithmic process to understand the potential and limitations of DNA computing.

The Hamiltonian Path Problem

The Hamiltonian path problem (hereafter referred to as HP) in a directed graph with designated start and end vertices is a very hard problem to solve for a general directed graph, it is NP-C, so there are no polynomial time solutions to this problem. The input consists of a directed graph G = (V, E), a vertex vstart (V, and a vertex vend (V. The decision problem is to determine if there exists a path in G from vstart to vend that passes through every other vertex in G exactly once. In many applications, if there is such a path, we would like to find one.

Notice one thing about problems in NP (and NP-C), if we are given an input for the problem and a proposed solution, it is possible to check the validity of the solution in polynomial time. Generating a solution and checking the validity of a solution are two entirely different problems. For the HP problem we have the following scenario: Let (G, vstart, vend) be the input, let n = (V(, and let w0, w1, …, wq be any path in G. We can check whether or not this is a Hamiltonian path from vstart to vend by determining if it satisfies the following properties:

1. The path begins and ends at the correct vertices; that is, w0 = vstart and wn = vend.

2. The path has the correct length; that is, q = n – 1.

3. Every vertex in V appears in the path exactly once.

These three checks can be carried out very quickly, certainly within polynomially bounded time, by a “normal” algorithm (a conventional algorithm). Note that being able to check one path in polynomially bounded time does not give us an algorithm for solving the HP problem because the number of distinct paths to be checked is not, in general, polynomially bounded.

Adleman’s DNA Approach
Adleman’s approach to solving the HP problem was to use the biochemical processes of DNA as the computational agent. Strands of DNA were generated to represent the various paths in the graph and check them all in parallel. His algorithm, from a high-level perspective is shown in Figure 1.

[image: image10.wmf]2

R

Unfortunately, biochemical processes are not as exact as digital computers. As we explore this technique in more detail, we’ll see where some problems occur and the impact that these problems have on DNA computing. But first, we need to understand DNA a little bit to make sense of DNA computing.

Some Background on DNA
DNA is deoxyribonucleic acid, the genetic material that encodes the characteristics of living things. All we are interested in about DNA is how it can be used to do computation, so a complete understanding of DNA is not required for where we are heading, so for the biologists in the class, I apologize as this will probably be a very simplistic look at DNA from your point of view.

DNA consists of strings of chemicals called nucleotides. There are four nucleotides in DNA, each denoted by the first letter of its name: adenine (A), cytosine (C), guanine (G), and thymine (T). We can encode any information using this four-letter alphabet, just like we encode any information in bits (0 and 1). Modern technology makes it possible to synthesize strands of DNA containing a specified sequence of nucleotides; that is, to create any desired string of letters to represent data.

John Watson and Francis Crick discovered the double helix structure of DNA (and won a Nobel Prize for doing so!). The nucleotides form complementary pairs; A and T are complements, and C and G are complements. Two strands of nucleotides will attach to each other (and twist around in a double helix) if they have complementary elements in the corresponding positions. Figure 2, illustrated the attachment of the complementary strands (but not the double helix).

[image: image11.wmf]1

R

Figure 2 – Double stranded DNA, showing complementary pairs.

The fact that complementary strands attach to each other is used repeatedly in the DNA algorithm for solving the HP problem. It can happen that two strands attach even though they do not have complementary elements in some positions. This is one of the properties of DNA processes that can cause serious problems for the algorithm.

Kary Mullis, a chemist, developed a process called polymerase chain reaction (PCR), which duplicates small samples of DNA. This technique is now widely used in genetics research and forensics. Mullis also won a Nobel Prize for his work in this area. PCR is used in several steps of Adleman’s HP algorithm to reproduce strands that satisfy properties that we are seeking in the solution to the HP problem. The actual biochemical processes used at each step in the algorithm are quite complex and fortunately we don’t need to understand them in order to follow the logic of the algorithm. This background in DNA should be all we need to understand DNA computing. We’ll continue by looking more closely at Adleman’s graph and his algorithm.

Adleman’s Directed Graph and the DNA Algorithm
The specific graph that Adleman used as input for the problem is shown in Figure 3.

[image: image12.wmf]4

R

[image: image13.png]S2-1

b do

1

3 dro

n = 7, vstart = 0, vend = 6

Figure 3 – Adleman’s input graph and parameters for the HP problem.

Before the algorithm begins, a string Ri of 20 letters from the alphabet A, C, G, T is associated with each vertex vi in G. For example, let’s let R2 = TATCGGATCGGTATATCCGA. The letters in the string Ri are denoted as d i,1, d i,2, …, d i,20. Thus, d 2,1 = T, d 2,6 = G, and d2,20 = A.

Step 1: Generate Paths in G
The “recipe” for generating strands of DNA to represent the paths in G uses two kinds of ingredients, strands that represent edges in G and strands that represent vertices.

Strands that represent edges of G: For each edge vivi, such that vi (vstart, and vj (vend, make a strand, denoted Si(j, using the second half of Ri and the first half of Rj. Thus, Si (j = di, 11, di, 12, di, 13, …, di, 20, dj, 1, dj, 2, …, dj, 10. Notice that each Si (j has length 20, and that the orientation of the edges in G is preserved. In other words, Si (j (Sj (i (probably).

For edges that emanate from the start vertex or are incident on the end vertex, a slightly different strand is created. For these edges all of Rstart or Rend are used and either preceded or followed by all of the other Ri. For example, Sstart (3 consists of all of Rstart followed by the first half of R3 which would be:

Sstart (3 = dstart ,1, dstart, 2, dstart, 3, …, dstart, 20, d3, 1, d3, 2, …, d3, 10

This strand has length 30.

A large number of the edge strands, about 1014 copies of each for Adleman’s graph with 7 vertices and 14 edges, are synthesized and put into the DNA “soup” shown in Figure 4.

[image: image14.wmf]3

R

[image: image15.png]

Figure 4 – The DNA “soup” containing edge strands and vertex strands.

For each vertex vi (not including vstart or vend), a large quantity of strands, again for this graph size, large is about 1014, which are the complement Ri, called
[image: image17.png]S2-1

b do

1

3 dro

are created. Thus, for the nucleotide in each position of
[image: image2.wmf]i

R

 is the complement of the nucleotide in the corresponding position in Ri. For example,

if R2 = TATCGGATCGGTATATCCGA

 then
[image: image3.wmf]2

R

 = ATAGCCTAGCCATATAGGCT

These strands go into the “soup” along with the edge strands. The “soup” is contained in a test tube, and the ingredients are the DNA strands along with some water, salt, and a chemical called a ligase. The amount of the soup is about 1/10 of a milliliter for this size of a graph (about 1/50th of a teaspoon).

To create long strands that represent paths, what needs to happen, for example, is S4(5, S5(2, and S2 (1 to join end to end in order to represent the path consisting of the edges v4v5, v5v2, v2v1. The question is, how to get the strands to join in this fashion. Recall that the strands of DNA attach to form double strands if they have complementary elements in corresponding positions. So the answer is that the vertex strands will hold the appropriate edge strands together. Recall, for example, that the last half of S5(2 is the first half of R2, and the first half of S2 (1 is the last half of R2. This means that the vertex strand
[image: image4.wmf]2

R

 in the “soup” will attach to S5(2 and S2 (1, as shown in Figure 5.

[image: image16.png]

Figure 5 – Attaching DNA strands to generate paths.

The strands combine into double helix strands in the “soup” to define the paths in G. Some of these paths are shown below:

v4v1v2v1

v3v2v1

v5v6

v0v3v4v5v6

v0v6

v0v1v2v3v4v5v6

v4v5v2v1

v0v3v2v1v2v3v4v5v6
The ligase in the mix “glues” the edge strands together, so edges that make up a path will remain together when the vertex strands are removed later on in the process.

At this point in the process, it would be nice to say that the soup contains strands which represent all simple paths in the graph. However, herein lies one of the problems of DNA computing. The soup may not contain all the simple paths. Although the probability is very small (there are only a few hundred simple paths in this graph), it is possible that the necessary strands just may not happen to bump into each other and attach. For now, let’s assume that this is not a problem and we are guaranteed to have all simple paths represented in the soup. The next step is to eliminate the strands that do not satisfy the properties (1 through 3) that describe a Hamiltonian path.

Step 2a: Verify Proper Start and End Vertices
The PCR process can be made to duplicate DNA strands that have specific sequences at the ends of the strands. In this case, the strands that begin with Rstart and end with Rend were duplicated. Therefore the soup only contains strands which represent paths with the proper starting and ending vertices. Some of these paths are:

v0v6

v0v1v2v3v4v5v6

v0v3v2v3v4v5v6

v0v3v2v1v2v3v4v5v6
 Although strands for these paths vastly outnumber “bad” strands (strands for paths that do not have the proper endpoints), some of the “bad” strands will remain.

Step 2b: Extract Paths with the Correct Length
A DNA molecule representing a path has a complete copy of Ri for each vertex vi in the path. Each Ri has a length of 20. Adleman’s input graph has seven vertices, so the DNA extracted will be in strands of length 140. There is a process to do this. DNA is negatively charged. The DNA mixture is put at one end of a block of gel, and the other end is positively charged. The DNA molecules migrate toward the positive charge, but smaller molecules move faster than larger ones which allows for molecules of the desired length to be extracted. As before, some “bad” strands may still be included after this extraction process. Typically, the process is repeated several times to reduce the fraction of extracted strands with incorrect lengths.

After stripping off the vertex strands what will remain will be single-strand DNA representing paths such as:

v0v1v2v3v4v5v6

v0v3v2v3v4v5v6

The example extracted paths above illustrate the necessity of the next step, as the second path has the correct starting and ending vertices and the correct length, but it passes through v3 twice and never through v1.

Step 2c: Extraction of Paths that Pass Through Every Vertex
For each vertex vi in turn (other than vstart and vend), copies of
[image: image5.wmf]i

R

 are added to the soup and strands to which they attached are extracted from the soup, the others are discarded.
[image: image6.wmf]i

R

 will attach to strands representing paths that pass through vi (Adleman attached the
[image: image7.wmf]i

R

 molecules to microscopic magnetic beads, then used a magnet to separate the desired strands from the others.) Then the
[image: image8.wmf]i

R

 molecules are separated from the path strands and removed. Now the remaining path strands which represent paths that pass through vi (once again some bad strands may slip through).

When this step is completed for all the vertices (other than vstart and vend), the remaining DNA strands, if there are any, represent the desired Hamiltonian paths. The sequence of the path can be read using a device called a sequencer.

Analysis and Evaluation of DNA Computing
Correctness
The theoretical algorithm (generate all paths, then check the required properties) is correct. However, as we have pointed out, “mistakes” can occur in the biochemical processes of the DNA implementation. Thus the DNA computation is not guaranteed to produce the correct answer.

Typically, when you think of a computer algorithm, unless a mistake is made in the logic, it will work correctly for all valid inputs. However, there is a class of algorithms called probabilistic algorithms (which can be programmed on conventional computer systems) which use randomness at various steps. Such algorithms may produce an incorrect answer, or may produce no answer at all, or they may fail to produce an answer within the specified time bound. Probabilistic algorithms that are programmed on computers can be analyzes mathematically. The probability that the algorithm will return the correct answer can be calculated. Probabilistic algorithms have advantages that make the trade-off of “certainty” worthwhile in some situations. For some of these algorithms it is possible to determine the precise trade-off between more computing time and a higher probability of producing a correct result. Some can be designed so that the probability of a bad outcome is smaller than the probability of a hardware error on a typical computer!

DNA algorithms are like probabilistic algorithms. The obvious potential advantage is the speed gained from the fact that a huge number of biochemical processes are occurring simultaneously. With current technology, the errors are a significant drawback. The practical usefulness of this approach will depend on current and future work to improve techniques which will reduce errors so that correct answers are achieved with high probability.

Analysis of Time and Space
Consider the following summary of the steps performed by Adleman in the laboratory, keeping in mind that counting steps in the lab is somewhat less precise that counting operations performed on a digital computer. Let G = (V, E), n = (V(, and m = (E(.

1. Synthesis of strands for vertices and edges. The time depends polynomially on the size of the graph.

2. Path generation. This step depends on the volume of DNA, which depends on the problem size. Researchers in the field believe that this can be considered nearly constant time for practical volumes of material. Similarly, the volume of the material being processed affects the time for the remaining steps, but there are practical limits on the volume of material, so in a sense the steps are constant in time. However, there remains a question of how large a problem can be solved with a practical volume of material (we’ll see this again later).
3. Amplification and extraction of strands with desired enpoints.

4. Extraction of strands with desired length.

5. For each vertex (other than the endpoints), extraction of strands that include that vertex. The number of steps is proportional to the number of vertices.

6. In the above steps, several applications of PCR, various washings, heating, and other processes.

 What we have done is describe a solution to an NP-C problem in a linear number of steps, but the times for the steps depend on the volume of the material needed for the particular input. For a fixed amount of laboratory equipment, some of the steps take time that is at least linear in this volume. Thus, understanding how the volume increases with input size is critical to analyzing the complexity of both time and space.

For Adleman’s seven vertex graph, the volume required is about 1/50th of a teaspoon. The question becomes will the volume really be a practical concern for inputs of reasonable size? As you are aware, exponential problems are not feasibly solvable on modern computers if the problem size is large. If the volume requirement for DNA computing grows exponentially with input size, then even a very small constant factor will soon be overcome.

To understand the problem, let’s restrict ourselves to considering graphs with an out-degree of two (every vertex two edges which emanate from it). The number of paths of length n-1 that begin at the start vertex will be 2n-1. This fact is illustrated in Figure 6.

2n-1 = 8

Figure 6 – Illustration of possible paths from vertex 1 of length n-1 for out-degree 2 graph of 4 vertices.

Certainly, the number of strands that need to be generated must at least equal this number, and in reality, considerably more must be generated. With a few rough calculations you can determine that if 1/50th of a teaspoon (1/10th of a milliliter) is needed for a graph of 7 vertices, then 25,000 gallons (about 100,000 liters) would be required for a 37 vertex graph with an out degree of two! Some researchers have estimated that 1025 kilograms of nucleotides would be needed for a 70 vertex graph. This is roughly the mass of the earth! Such is the problem of exponential growth.

Adleman and the research community recognize that something more sophisticated will be required before DNA computing can scale up to significantly large problems. The purpose of Adlemen’s initial experiment was to determine if DNA could be harnessed to carry out significant computation at all, with today’s technology and it turns out that it can. Some progress has been made in this area as newer DNA algorithms use more sophisticated techniques and generate some potential solutions, then eliminate the bad ones, then generate some more, and so on, thereby reducing the total space requirements, rather than needing to generate all possible solutions first.

Future Directions of DNA Computing
Research in DNA computing (and more generally, molecular computation) is currently quite active. Much of the research is currently focusing on two areas; techniques to reduce the probability of error, and reducing the asymptotic order of DNA computing (working with the volume of material needed).

DNA computation has certain advantages over electronic computers. Adleman summarized its potential for being faster, using less energy, and storing data more densely. Computer speeds are constantly improving, but at the time Adleman did his experiment (1994), the fastest supercomputers executed approximately 1012 operations per second. Taking concatenation of DNA molecules (to generate paths) as a basic operation, Adleman estimated that the DNA method performed approximately 1014 operations (over the course of several hours) and that this number could be increased to about 1020, At the higher rate, the number of operations per second would be more than 1000 times as many as executed by a supercomputer. The comparison must be carefully interpreted however, since all the computer operations are directed by a program while the DNA operations are only loosely controlled and are largely random.

The DNA method uses less energy that a supercomputer. Adleman suggests that the path generation process could, in principle, perform more than 1019 operations per joule of energy, whereas a supercomputer performs approximately 109 operations per joule. One gram of DNA, which takes up about 1 cubic centimeter of space, can store as much information as one trillion compact disks.

Counterbalancing speed and low energy requirements of the molecular computer is the difficulty in obtaining the results, the output. The actual process that Adleman completed took seven days in real time in the lab. That’s a lot of time to find a Hamiltonian path in a seven vertex graph. Also, Adleman’s experiment required human intervention and control at each step. The process was not automated. This is another active research area in DNA computing, the design of automated molecular processing.

A fundamental result about DNA computing has already been proven: using a few basic operations to cut and paste DNA strands, DNA computing is a universal model of computation. This means that it has all the computational power of a general-purpose computer. Any problem for which we can write an algorithm, in the traditional sense, to run on a computer, can be solved using this model of DNA computation, and programs can be written into the DNA itself.

Summary of DNA Computing
The technology of DNA computing is very young now and the actual accomplishments so far are small. Laboratory computations have been done for inputs so small that, like Adleman’s HP problem, they could be solved much more quickly without a computer at all. But that is now any new technology starts. The first electronic computers filled large rooms and weighed many tons. They were less powerful than computers we can now carry in our pockets. Research into techniques to speed up the DNA chemical processes and make them less error-prone is continuing. It seems likely that DNA computing will prove useful for some kinds of problems, especially those whose solution can take advantage of the massive parallelism of the biochemical processes. At this point in time we do not know how useful it will be.

Quantum Computing
Useful quantum computers are still a few years away from being a reality; right now the most advanced working model can barely factor the number 15. Nonetheless, the past few years have seen a flurry of advances, as physicists figure out how to use quantum information to perform feats that are impossible in the classical world. At first glance, a quantum computer shouldn’t be much different from the ones that you use everyday right now, both are essentially machines that process information. In 1948, Claude Shannon, a Bell Labs scientist laid the groundwork for modern computing by founding information theory, a new discipline that did for information what the laws of thermodynamics did for heat. Today’s computers, true to Shannon’s vision, process information by manipulating “bits” that have the value of either 0 or 1. A 1 can be a high voltage, a closed switch, or a bright light, whereas a 0 can be a low voltage, an open switch, or a dim light. The medium is not the message, but however the bits are represented the computer uses an algorithm to make those ons and offs dance a jig and out pops the desired answer.

What makes quantum information much more intricate than Shannon’s information is that quantum computers, unlike their classical counterparts, can exploit the laws of the subatomic realm. Instead of manipulating bits, quantum computers store information on quantum-mechanical objects such as atomic nuclei, photons, or superconductors. A qubit (a quantum bit) might be a 1, for instance, if a photon is polarized vertically rather than diagonally, if an atom’s spin is pointing up instead of down, or if the current in a loop of superconductor is moving clockwise instead of counterclockwise.

The laws of quantum mechanics make qubits much different from bits. Instead of having to choose between being a 0 or a 1, a qubit can be both at once. This is called a superposition of states and is quite real. Consider for example, the electron. Every electron acts as if it were a little magnet, spinning about an axis, whose magnetic moment can point in only one of two directions, up or down. Thus the spin is quantized with two possible states which can easily be associated with the 0 and 1 states of a bit in an ordinary computer. You can “flip” the bit by giving it just a smidgen more energy. Suppose, however, you give it less energy than that, say half a smidgen. If you observe the electron’s state, you will find that it still points either up or down. However, now there is an important, yet subtle, difference. According to the rules of quantum mechanics, the probability of observing the spin in one or the other state will change. This is superposition, which means that the electron is in a qualitatively new state which is the superposition of the two states; a combined, in-between condition that can be say, 60% up and 40% down or 22% up and 78% down, or whatever. In 2000 a team of physicists from Delft in the Netherlands, showed that superconducting loops can carry currents that run both clockwise and counterclockwise at the same time. Under the right circumstances, manipulating a single qubit in superposition is equivalent to running a classical computer twice – once with the bit set to 0 and another time with the bit set to 1, potentially giving a quantum computer a speedup over a conventional one.

A second quirk of qubits that makes the quantum computer incredibly powerful is entanglement. When two quantum objects are entangled their fates are linked. The most famous incarnation of entanglement is Einstein’s “spooky action at a distance”, in which, if one entangled atom is poked, its entangled twin feels the prod, even if it is halfway across the universe! In theory, any number of particles can be entangled. Mathematically, such clusters are yoked together to form, in effect, a single object – you can’t manipulate one member without considering the effect on the others. In principle, this more-than-the –sum-of-their-parts effect allows qubits to be linked into larger and larger quantum systems capable of storing staggering amounts of information. Two entangled qubits can be equivalent to four sets of two bits – (0,0), (0,1), (1,0), (1,1) – all at once! Three entangled qubits are equivalent to the eight different combinations of three bits, and so on and so on exponentially. If the total number of qubits is q, the total number of possible states is 2q. A quantum computer made up of 500 particles could compute on more machine states simultaneously than there are atoms in the known universe.
A Closer Look at Quantum Computing
Imagine a quantum computer made of two atomic nuclei acted on by an external magnetic field. Suppose the nuclei belong to the neighboring atoms of carbon and hydrogen in a single molecule of chloroform, CHCl3. Just as electrons do, the nuclei align their spins with the magnetic field in the direction up (a 1) of down (a 0). To “compute” with this system you subject the nuclei to radio waves. By tuning the frequency and duration of the radio pulse in just the right way, it is possible to make one or the other nucleus flip its spin. It is even possible to ensure that it is the hydrogen nucleus that flips over only if the carbon nucleus is already pointing up. In that case the quantum behavior of the two nuclei functions as a controlled-NOT gate, with the carbon nucleus acting as the control. In symbolic form with carbon in the first position and hydrogen in the second position, there are four possible inputs (1, 1), (1, 0), (0, 1), and (0, 0). Controlled-NOT then operates in one of four ways:

(1,1) ((1, 0), (1, 0) ((1, 1), (0, 1) ((0, 1), and (0, 0) ((0, 0)

It has already been proven that by stringing together single-qubit operations and two-quibit controlled-NOT gates, it is theoretically possible to build a quantum computer capable of doing anything a classical computer can do.

The real power of a quantum computer however, as we have mentioned, comes from acting on a particle that is in superposition. To see how this power is developed, suppose we place the chloroform molecule in a strong external magnetic field that aligns both atomic nuclei (the carbon and the hydrogen) into the down (0) position. Then, with a pulse of tuned radio waves, tweak the carbon nucleus so that it does a partial flip, into a superposed state for which the probabilities for both spin directions are each 50% (a single-qubit operation). Finally, carry out a controlled-NOT operation with the carbon nucleus as the control qubit. Because the second qubit (the hydrogen nucleus) started out in the zero state, only two of the operations are relevant: (1,0)((1,1) and (0,0)((0,0). In other words, if the carbon nucleus had initially gotten flipped to a 1, the controlled-NOT operation would flip the hydrogen nucleus to a 1 state, too. But the action of the controlled-NOT on the superposed state of the carbon nucleus and the 0 state of the hydrogen nucleus leaves the two-qubit system as a whole in a more complicated superposition, with a 50% chance of being in the (1,1) state and a 50% chance of being in the (0,0) state. Such a superposition is called an EPR state (named after Einstein, Podolsky, and Rosen who first studied it in 1935).

There are some intensely puzzling aspects of the EPR state which arise when the two qubits are physically separated and independently operated on. Suppose you measure only the value of the first qubit, the spin state of the carbon nucleus. When you do this you encounter one of the fundamental rules of quantum mechanics: If an interaction gives any information about the state of a quantum system, the rest of the system immediately readjusts itself to be consistent with that information. In quantum mechanics parlance, the system dechoeres. In general, any attempt to measure or observe a system in a superposition of two or more states immediately forces the system to make a decision. Instead of continuing in its intermediate, superposed state, the quantum system jumps into just one of the possible quantum states open to it. Therefore, in our CHCl3 quantum computer, by observing the carbon qubit of the EPR state, you force decoherence and destroy the superposition. You had an 50/50 chance of observing a 0 or a 1, but you could observe only one state or the other. The observation also implies that the system as a whole cannot continue to be in its superposition of the two states (0,0) and (1,1); instead, it too takes on a single, definite state, and so the hydrogent qubit assumes the same value as the carbon one. In quantum mechanical terms, both states appear at the same time because the two nuclei have become entangled.

As we mentioned earlier, entanglement is where the real power of quantum computing appears to reside. The power of entanglement stems from the fact that you do not have to measure the values immediately. Instead, you can leave the system in its superposed state and carry out any number of delicate and intriguing operations on the qubits before you finally decide to make an observation. Meanwhile, any quantum operation on the systems acts on all of the states simultaneously. Thus if there are a total of q qubits, the total number of possible states is 2q.

Thus, from 500 particles you could, in principle, create a quantum system that is the superposition of as many as 2500 states. Each state would be a single list of 500 1’s and 0’s. Any quantum operation on that system – a particular pulse of radio waves, for example, whose action was, say, to execute a controlled-NOT operation on the 175th and 176th qubits – would simultaneously operate on all 2500 states. Hence with one machine cycle, one tick of the system clock a quantum computer could compute not on just one machine state, as on a serial computer, but on 2500 machine states at once! Eventually, however, observing the system would cause it to collapse into a single quantum state corresponding to a single answer, a single list of 500 1’s and 0’s – but that answer would have been derived from the massive parallelism of quantum computing.

The consequence is that for some problems quantum computers would be so much faster than classical computers that they could solve problems classical computers cannot touch. For example, quantum algorithm have already been developed that will factor 140 digit numbers roughly a billion times faster than is currently possible on the fastest supercomputers every built!

Obstacles Surrounding Quantum Computing
For all the potential that quantum computing appears to offer, there are nonetheless some major obstacles that will need to be overcome before you can head to the local mall any buy your own quantum computer. For instance, the mathematics involved in analyzing the evolution of a system of particles is daunting, to say the least. Just as you might fly from Orlando to Chicago either directly or via any of several hub airports, a subatomic particle changing from one state to another can take several possible paths. The difference is that, whereas your plane can take only one of the available routes, the particle acts like a wave that simultaneously takes them all! Furthermore, the probability of finding the particle along each path fluctuates from point to point and from moment to moment, as if it were a wave with crests and troughs. To evaluate the probability that any particular state will come to pass, one must sum the probabilities of all the paths leading to that state, being careful to keep the probability waves along each path in the proper phase. This requires some very sophisticated mathematics!

Another obstacle is that quantum computers are extremely fragile. To remain in an intermediate, superposed state, a quantum-mechanical system needs to be almost totally isolated from its environment; the slightest interaction with anything outside itself will perturb the system, destroy the superposition, and upset the computation. As a result, if you want to build a quantum computer you need to shield it from heat, cosmic rays, and other potential outside observers, including outside observers. Moreover, once your quantum computer has solved a problem for you, your own need to read out the answer forces you to destroy the system.

While there is much research currently underway dealing with the physical development of quantum computers, there is also a great deal of research being devoted to developing algorithms that will run on quantum computers when they are built. The massive parallelism possible in a quantum computer will fundamentally change the face of computation, of this there is no doubt. Quantum computers would be able to search every nook and cranny of the Internet in less than half and hour. They would be able to unscramble a DES transmission in five minutes, without knowing the “password”. What passes for a secure network today, would be wide-open with the advent of quantum computing. Encryption techniques such as RSA would be obsolete overnight.

Some of the obstacles surrounding quantum computing have already been solved, to some degree. For example, we have discussed that getting a solution from a quantum computer essentially forces the system to select a state in which to be observed, if the system could end in any one of say, a million states, then the chance that the observed state is the answer to your problem is only one in a million. So the trick is to force the system to select the proper state, but do so without any outside interference – no perturbation. This means that only internal, or quantum mechanical operations can be used to force the system into selecting the proper “final state”.

In 1998 Lov Grover, working at Bell Labs developed what has been proven to be an optimal search algorithm for quantum computing. The search algorithm is designed for searching unsorted databases and requires O(
[image: image9.wmf]n

) steps to complete the search. The search algorithm itself is fairly complicated, so to give you an idea of how it works, we’ll look at a straightforward example of searching for a name in a phonebook that has only four entries. Let’s assume that our quantum computer consists of a pair of particles (as before), with each name in the phonebook corresponding to the four distinct combinations of spins (0,0), (0,1), (1,0), or (1,1). Further, lets suppose, unbeknownst to us that the name we want to find corresponds to the third state (1,0). This is the target state.

To begin, the spins are initialized with a strong magnetic field (lets assume that we are using protons this time around to form the qubits in our quantum computer) which aligns them both in the up direction. Next each particle is given a fainter dose of magnetism, just enough to change the spin state to a superposed state that is 50% up and 50% down (a 50% flip). The two particle system has now become a superposition of four possible combination spins, each with probability of 1/4.

In quantum mechanics each probability is treated mathematically as the square of the theoretical (but not directly observable) construct called the probability amplitude. Probability amplitudes, unlike actual probabilities, can be either positive or negative, and thus they can cancel one another out, just like waves do in water. The algorithm takes advantage of this by canceling computational paths that initially seem promising but later turn out to be dead-ends.

Since each of the four superposed states has a probability of 1/4, the probability amplitude of each state in the two particle system can be either +1/2 or –1/2 (in reality it can even be a complex number). The algorithm ensures that all the probability amplitudes begin with the same value: (1/2, 1/2, 1/2, 1/2). Now comes the heart of the algorithm. The first operation changes the sign of the amplitude of the target state (in our example, this is the third state); so the amplitudes become: (1/2, 1/2, -1/2, 1/2). This is possible to do, because, in a sense, when the quantum computer is in the target state, it can verify that it is indeed in the right state and can then invert the phase in that state. Notice that this operation does not reveal anything to the outside world, because the probabilities, that is the square of the probability amplitudes, remains unchanged.

Next come three quantum operations: a 50% flip, followed by another 50% flip. The net effect of which is called “inversion about the average”. (Think of the average value as a crossbar whose height is equal to the average value of the amplitudes, with the various individual amplitudes rising above or hanging below the crossbar, you invert each amplitude by flipping it over the to the opposite side of the crossbar.) What is this net effect in our example? The average amplitude in the four states, after changing the sign of the target state is: (1/2 + 1/2 – 1/2 + 1/2)/4 = 1/4. The first state has an amplitude of 1/2, which is 1/4 above the average, and so after the inversion about the average its amplitude will become 1/4 below the average, or 0. The second state also has an amplitude of 1/2, which is 1/4 above the average, and so after the inversion about the average its amplitude will also become 1/4 below the average, or 0. The third state has has an amplitude of -1/2, which is 3/4 below the average, and so after the inversion about the average its amplitude will become 3/4 above the average, or 1. Finally, the fourth state has an amplitude of 1/2, which is 1/4 above the average, and so after the inversion about the average its amplitude will become 1/4 below the average, or 0. Thus the amplitudes have become (0, 0, 1, 0). The square of each of these numbers gives the probability of each state. In other words, the effect of the operations is to drive the quantum computer into the target state; the probability of the target state has reached certainty. If you now observe any of the spins of the protons in the system, the quantum superposition will collapse into a display of the right answer!

In reality, the search would be on a list significantly larger than four, so the quantum operations would need to be repeated more than once, nudging the system toward the target state.

Summary of Quantum Computing
If the 21st century is to be an age of quantum computing, some major advances will be necessary. It remains unclear at this point in time, how long it will be before a quantum computer is developed that approaches the theoretical possibilities for this type of computation. There is certainly enormous potential in quantum computing, but there are also enormous problems facing researchers in quantum computing. Will these problems be overcome and will we see quantum computers develop to their full theoretical potential? I won’t speculate here, but will leave you with these words that appeared in the March 1949 issue of Popular Mechanics in a discussion about the ENIAC (Electronic Numerical Integrator and Calculator):

Where a calculator in the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers in the future may have only 1,000 vacuum tubes and weigh only 1.5 tons.

Generate DNA strands to represent the paths in G.

Use biochemical processes to extract strands satisfying properties 1 through 3 (see above for checking the validity of a solution to the HP problem.), all other strands are discarded.

Extract strands that start at vstart and end at vend. Discard all others.

(b) Extract strands that include n vertices. Discard all others.

(c) Extract strands that contain every vertex. Discard all others.

Any strand that remains represents a Hamiltonian path from vstart to vend. If no strand remains, G has no Hamiltonian path which begins at vstart and ends at vend.

n = 4

2n-1 = 8

Paths beginning at 1

1(2(3(4

1(2(3(2

1(2(1(2

1(2(1(4

1(4(3(2

1(4(3(4

1(4(1(4

1(4(1(2

S2 (1

� EMBED Equation.3 ���

2

1

3

� EMBED Equation.3 ���

� EMBED Equation.3 ���

4

� EMBED PBrush ���

S3 (2

S0 (6

� EMBED Equation.3 ���

S0 (1

S0 (1

5

6

1

4

2

3

0

� EMBED PBrush ���

The Possible Future of Computing (19)

The Possible Future of Computing - 19

_1088514209.unknown

_1088542135.unknown

_1088542222.unknown

_1088712651.unknown

_1088514330.unknown

_1088540195

_1088513594.unknown

_1088514118.unknown

_1088513549.unknown

_1088513587.unknown

_1088513090.unknown

_1088452635

