
Introduction
In the previous few sets of notes we’ve examined the multi-way tree and specifically several of the variants known as an m-way search tree. We’ve seen the B-tree and the special variant which restricts the number of keys and children of a node known as the 2-4 tree. In this set of notes we will examine several of the special variants of B-tree that have important applications in computer science. We won’t examine any of these structures in quite the same level of detail that we have with the previous structures, rather we’ll give them a cursory look so that you will be aware of some of these hybrid tree structures.

B*-Trees
Recall from our discussions of m-way trees and specifically that of the m-way search tree the importance of the structure for searches in which the retrieved data from the search is resident in secondary memory. With a typical B-tree used in this fashion the optimal configuration for the tree occurs when each node in the tree represents one block of secondary memory. Therefore, accessing one node means accessing one block of secondary memory. This turns out to be expensive when node itself is in secondary memory. Therefore, the fewer nodes that are created, the better.

A B*-tree is a variant of the B-tree that was introduced by Donald Knuth (and named by Douglas Comer). In a B*-tree, all the nodes except the root are required to be at least two-thirds full. Recall that the B-tree has no such restriction which leads to the worst case scenario of the nodes in the tree being only half-full, on the average, with an expected value of only about 69% full, on the average. More precisely, the number of keys, k, in all non-root nodes of a B*-tree of order m is given by:

[image: image1.wmf]1

m

k

3

1

m

2

-

£

£

ú

û

ú

ê

ë

ê

-

The frequency of node splitting is decreased by delaying a split, and when the time comes, by splitting two nodes into three nodes rather than one node into two as in the normal B-tree. This leads to an average space utilization of 81% for the B*-tree compared to the 69% of the B-tree.

A split in a B*-tree is delayed by attempting to redistribute the keys between a node, its sibling, and the separating key value from the parent when the node overflows. Figure 1 illustrates how this redistribution of the keys delays the node splitting. In Figure 1(a), a B*-tree of order 7 is shown into which a key value of 6 is to be inserted. This key value should be inserted into the left most node of the root, which is already full. Instead of splitting the node, all the keys from this node and its sibling are evenly divided and the median key value, which in this example is key value 10, is placed into the parent node (the root in this case) as shown in Figure 1(b). Notice that this not only evenly divides the key values, but also frees space in the node that was originally full.

Figure 1 – (a) Initial B*-tree of order 7. (b) After insertion of key value 6.

If the sibling happens to also be full, a split must occur. One new node is created and the key values from the node, its sibling, and the separating key from the parent are evenly divided among three nodes, and two separating keys are placed into the parent node. All three nodes which participate in the split are guaranteed to be two-thirds full. Figure 2 illustrates the situation when an insertion occurs into a full node whose sibling is also full. Figure 2(a) illustrates an initial B*-tree of order 5 into which key value 4 is to be inserted. This insertion is to occur in the leftmost child of the root which is full. The sibling of this node is also full so a split will occur. The splitting and redistribution of the key values is illustrated in Figure 2(b).

Figure 2 – (a) Initial B*-tree of order 5. (b) After insertion of key value 4.

This increase in the space utilization within the nodes of the tree, commonly referred to as the fill factor, can be achieved in a variety of ways. Some database systems allow the user to choose a fill factor between 0.5 and 1. In particular, a B-tree whose nodes are required to be at least 75% full is called a B**-tree. A B**-tree is a variant of the more generalized Bn-tree which is a B-tree whose nodes are required to be (n+1)/(n+2) full. Thus, for example, a B6-tree is a B-tree which requires a space utilization of 7/8, while a B8-tree will require all nodes in the tree to be 90% filled.

B+-Trees
Since a node in a B-tree represents one secondary memory page or block, the movement from one node to another requires a time consuming page change. Therefore, we would want to make as few node accesses as possible during a search. What would happen, for example, if we were to request that every key value in the tree be printed in ascending order? As you are well aware, an inorder traversal of the tree would accomplish our task, but at what cost? For all non-terminal nodes, only one key is printed at a time and then another page needs to be accessed. What we need is an enhancement of the B-tree structure that will allow us to access data sequentially in a much faster manner than using an inorder traversal. Fortunately, such a structure exists and it is called a B+-tree.

In a B-tree, references to data are made from any node of the tree. Recall that we mentioned that in most applications of B-trees, only the key value of the data is stored in the tree along with the address (usually on secondary memory) of where the remainder of the data associated with that key resides. Thus, in a B-tree, access to secondary memory is possible from any node of the tree. In a B+-tree however, these references are made only from the leaves. The internal nodes of a B+-tree are indices for fast access of data; this part of the B+-tree is called an index set. The leaves of a B+-tree have a different structure than the internal nodes of the tree, and typically they are linked sequentially to form a sequence set so that scanning this list of leaves results in data being processed in sequential order. Hence a B+-tree really is a B plus tree: it is an index implemented as a regular B-tree plus a linked list of data. Figure 3 illustrates an example of a B+-tree. Note that the internal nodes store key values, references to other nodes, and a count of the number of key values in that node (the keyTally from the B-tree). Leaf nodes store keys, references to records in secondary memory associated with the key values, and references to the next leaf node.

Figure 3 – B+-Tree of order 4.

Operations on B+-trees are not much different from operations on B-trees. Inserting a key into a leaf which is not full requires putting the key values of the leaf in order and no changes occur to the index set. If a key is inserted into a full leaf node, the leaf is split, the new leaf node in included in the sequence set, the keys are distributed evenly between the new and the old leaf nodes, and the first key from the new node is copied (not moved as in a B-tree) to the parent. Figure 4 illustrates an insertion of this type in a B+-tree of order 5. Figure 4(a) illustrates the initial tree and Figure 4(b) illustrates the tree after the insertion of new key value 6. In the interest of space and clarity only the portion the tree affected by the insert is shown in Figure 4. If the parent is not full, this may require local reorganization of the keys of the parent. If the parent is full, the splitting process continues up the tree as with a B-tree (remember that the index set is just a B-tree).

Figure 4 – (a) Initial B+-tree of order 5. (b) Tree after insertion of key value 6.

Deletion of a key value from a lead that does not cause underflow requires putting the remaining keys in order in the node. No changes are made to the index set. In particular, if a key which occurs only in a leaf is deleted, then it is simply deleted from the leaf node but can remain in the internal node in the index set. The reason this is so is that the deleted key value still serves as a proper guide when navigating down the B+-tree because it still properly separates keys between two adjacent children even if the separator key value does not occur in either of the children. Figure 5 illustrates deletion in a B+-tree of order 5. Figure 5(a) illustrates the initial B+-tree. Figure 5(b) illustrates the tree after the deletion of the key value 6 which is removed from the leaf but not the internal node.

Figure 5 – (a) Initial B+-tree of order 5. (b) Tree after deletion of key value 6. (c) Tree of (b) after deletion of key value 2.

When the deletion of a key value from a leaf node causes an underflow, then either the key values from this leaf and the key values from a sibling are redistributed between the leaf and its sibling, or the leaf node is deleted and the remaining keys are moved to its sibling. Figure 5(c) illustrates the latter case when the leaf node is deleted. After deleting key value 2, an underflow occurs and two leaves are combined to form a single leaf node. The first key from the right sibling of the node which remains after the merging, is copied to the parent node, and the key values in the parent are put into the proper order. Both of these operations require updating the separator in the parent. It is also possible that removal of a leaf node may trigger merges in the index set.

Prefix B+-Trees
In a B+-tree, if a key value occurred in both a leaf node and an internal node, then it was sufficient to delete it only from the leaf node since the key value retained in the index set was still usable as a guide in subsequent searches. This means that it really doesn’t matter whether a key in an internal node is in any leaf node or not. What matters is that it is an acceptable separator for key values in adjacent children. For example, for two key values K1 and K2, the separator s must meet the condition K1 < s (K2. This property of the separator keys is also retained if we make the key values in the internal nodes as small as possible by removing all redundant contents from them and still have a properly working B+-tree.

A simple prefix B+-tree is a B+-tree in which the chosen separators are the shortest prefixes that allow for the distinction of two neighboring index keys. Consider the B+-tree shown in Figure 6 (same tree as in Figure 3).

Figure 6 – B+-Tree of order 4.

In Figure 6, the left-most child of the root contains, two key values: BF90, and BQ322. If a key has a value less than BF90, the left-most leaf is chosen; if it is less than BQ322, the second leaf is selected. Notice however, that the same leaf nodes would be selected if key values BF9 or just BF are used and instead of BQ322, one of the three prefixes BQ32, BQ3, BQ is used. After choosing the shortest prefixes of both keys, if any key less than BF, the search will be directed toward the left-most leaf, and if the key is greater than BF but less than BQ, the second leaf will be selected producing exactly the same result as before when using the entire key value. Reducing the size of the separators to the bare minimum does not change the result of the search. It only makes the separators smaller. As a result, more separators can be placed in the same node which allows a given node to have more children. This means that the entire B+-tree can be represented in fewer levels (less height to the tree) which reduces the branching factor and makes processing the tree faster. Figure 7 shows the B+-tree of Figure 6 represented as a simple prefix B+-tree.

Figure 7 – The B+-tree of Figure 6 represented as a simple prefix B+-tree.

Note in Figure 7 in the right child of the root that the key value CF04 has no prefix other than the entire key value itself that can be used since key values CF03, CF04, and CF05 are all present in the tree.

The operations on simple prefix B+-trees are much the same as the operations on B+-trees with certain modifications to account for the prefixes used as the separators. In particular, after a split, the first key from the new node is neither moved nor copied to the parent, rather the shortest prefix is found which differentiates it from the prefix of the last key in the old node; and then the shortest prefix is placed in the parent. For deletion, some separators retained in the index set may turn out to be too long, but to make deletion faster, they are typically not shortened immediately.

The idea of using prefixes as separators can be carried even further. This capability comes from the realization that prefixes of prefixes can be omitted at lower levels in the tree. This is the idea behind the general prefix B+-tree. This method works extremely well if the prefixes are long and repetitious. Figure 8 illustrates a simple prefix B+-tree in which each key contains the prefix AB12XY and this prefix exists in all internal nodes. Figure 9 represents the tree from Figure 8 represented as a prefix B+-tree. Notice that the prefix is removed from all the children of the root. To restore the original prefix, the key from the parent node, except for its last character, becomes the prefix of the key found in the current node. For example, the first cell of the left-most child of the root in Figure 9 has the key “08”. The last character of the key in the root is discarded and the prefix obtained, “AB12XY” is put in front of the “08”. The new prefix “AB12XY08” is used to determine the direction of the search.

Figure 8 – A simple prefix B+-tree.

Figure 9 – A prefix B+-tree.

The question is, “How efficient are prefix B+-trees?”. Experimental results indicate that there is almost no difference in the time needed to execute algorithms in B+-trees and simple prefix B+-trees, but prefix B+-trees need 50-100% more time. In terms of disk accesses, there is no difference between these trees in the number of times the disk is accessed for trees of 400 nodes or less. For trees of 400-800 nodes, both simple prefix B+-trees and prefix B+-trees require 20-25% fewer accesses to disk. This indicates that simple prefix B+-trees are a viable option. However, prefix B+-trees remain largely of theoretical interest.

Bit -Trees
Bit-trees are a fairly new data structure being proposed by Ferguson in 1992. In a sense, bit-trees are the ultimate prefix B+-tree. As we have just seen, in prefix B+-trees the separator is defined at the byte level. In bit-trees, the bit level is reached in the definition of the separator.

The bit-tree is based on the concept of a distinction bit (often referred to as a D-bit). A distinction bit D(K, L) is the number of the most significant bit which differs in two keys K, and L. The distinction bit D(K, L) is defined as:

[image: image2.wmf]ë

û

or

exclusive

is

where

L

K

1

bits

in

length

key

L

K

D

2

Å

Å

-

-

=

)

(

log

_

_

_

)

,

(

In case you’ve forgotten, the xor operator has the truth table shown in Table 1.

	A
	B
	A xor B

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

For example, the D-bit for the letters “K” and “N”, whose ASCII codes are 01001011 and 01001110, is 5, the position at which the first difference between these keys is detected (reading left to right starting with position 0). Using the expression above we have:

[image: image3.wmf]ë

û

5

2

7

5

1

8

N

K

D

2

=

-

=

-

-

=

)

(

log

)

"

"

,

"

("

[image: image4.wmf]00000101

01001110

01001011

Å

A bit-tree uses D-bits to separate keys in the leaf nodes only. The remainder of the tree (the index set) is a prefix B+-tree. This means that the actual keys and entire records from which the keys are extracted are stored in the data file (typically on secondary memory). As before, this means that the leaf nodes can store more information than would be the case if the entire key were stored in the leaf node. The leaf entries refer to the keys indirectly by specifying distinction bits between keys corresponding to neighboring locations in the leaves. Figure 10 illustrates the leaf node of a bit-tree.

Figure 10 – Illustration of a leaf node in a bit-tree.

All the keys in the leaf nodes of a bit-tree are stored in ascending order. Therefore, Di = D(Ki-1, Ki) indicates the leftmost bit that is different in these two key values. This bit is always 1 since Ki-1 < Ki for 1 (i < m (where m is the order of the bit-tree. In Figure 10, D(“N”,”O”) = D(01001110, 01001111) = 7, and the bit in position 7 is “on” and all preceding bits in both keys are the same.

Let j be the first position in a leaf for which Dj < Di and j > i; Dj is the fist D-bit smaller than a preceding Di. In this case, for all key values between positions i and j in this leaf, the Di bit is 1. In the example shown in Figure 10, j = i+2, since Di+2 is the first D-bit following position i that is smaller than Di. Bit 5 in key “O” in position i+1 is 1 and there is also a 1 in bit position 5 for key “N” in position i in the leaf.

Shown below is the algorithm for searching for a key value using a bit-tree leaf.

Example
Using the butTreeSearch algorithm shown above and the bit-tree leaf node shown in Figure 10, let’s see how the algorithm will search for the key value “V”. Since Figure 10 is not a complete leaf node, let’s assume that i-1 = 0 and i+3 is the last entry in the leaf. R is initialized to R0 and i to 1.

1. In the first iteration of the for loop, bit D1 = 5 in key value “V” = 01010110 is checked, and because it is 1, R is assigned to R1.

2. In the second iteration, bit D2 = 7 is tested. It is 0, but nothing is skipped, as required by the else clause, since immediately a D-bit is found which is smaller than 7 (the one for key value “R”).

3. The third iteration, bit D3 = 3 is 1, so R becomes R3.

4. In the fourth iteration, bit D4 = 5 is tested and since it is a 1, R is properly assigned R5. This is the last entry in this leaf; the algorithm terminates and R5 is properly returned.

What happens if the key value which is the subject of the search is not in the data file? For example, in Figure 10 what happens if we search for the key value “S”? The ASCII code for “S” = 01010011 and if we make the same assumptions as in the previous example about the size of the leaf node (i.e., the number of key values that it contains) we have the following:

Bit D1 = 5 is 0, so the position with D-bit = 7 is skipped, and since bit D3 = 3 in “S” is a 1, the algorithm would return record R3. To prevent this (since record R3 does not contain key value “S”) the algorithm must check to see if the retrieved record really corresponds to the object of the search. If not, negative 1 is returned to indicate a failure condition on the return.

Advanced Tree Structures – The Family of B-Trees (11)

26

19

1

CD244

15

13

11

10

8

1

19

26

19

(b)

10

8

2

1

15

13

11

19

26

19

11

6

29

(a)

15

13

11

10

8

6

2

1

19

11

6

29

(b)

15

13

11

26

19

10

8

6

2

1

19

11

6

29

(a)

26

19

15

13

11

10

8

2

1

19

11

29

DR305

2

DR300

DP102

CF05

3

CF04

CF03

2

CD244

CD123

2

BQ322

BF130

2

BF90

BC26

AS09

3

AB203

DR300

2

CF04

(b)

30

28

27

18

16

7

4

2

1

0

CD244

25

5

(a)

1

30

28

27

25

18

BF90

7

5

2

1

0

2

BQ322

16

(b)

28

27

25

18

16

12

7

6

5

2

1

0

25

18

12

9

7

5

2

1

0

9

(a)

28

27

16

11

29

(c)

BF90

2

BQ322

CF04

2

DR300

AB203

3

AS09

BC26

BF90

2

BF130

BQ322

2

CD123

CD244

2

CF03

CF04

3

CF05

DP102

DR300

2

DR305

CD2

1

BF

2

BQ

CF04

2

DR

AB203

3

AS09

BC26

BF90

2

BF130

BQ322

2

CD123

CD244

2

CF03

CF04

3

CF05

DP102

DR300

2

DR305

1

AB12XY1

AB12XY09P

AB12XY08

2

AB12XY15

AB12XY12C

2

AB12XY06RS

AB12XY05RQ

AB12XY05PR

3

AB12XY09GH

AB12XY09BC

AB12XY08PR

3

AB12XY09YZ

AB12XY09XY

AB12XY09PR

3

AB12XY12BC

AB12XY12AB

AB12XY10AB

3

AB12XY13FG

AB12XY13DF

AB12XY12CD

3

AB12XY16AB

AB12XY15DE

AB12XY15BC

3

AB12XY1

1

2

12C

15

2

08

09P

3

AB12XY05PR

AB12XY05RQ

AB12XY06RS

3

AB12XY08PR

AB12XY09BC

AB12XY09GH

3

AB12XY09PR

AB12XY09XY

AB12XY09YZ

3

AB12XY10AB

AB12XY12AB

AB12XY12BC

3

AB12XY12CD

AB12XY13DF

AB12XY13FG

3

AB12XY15BC

AB12XY15DE

AB12XY16AB

position in leaf

D-bit

pointer to data file

key value

key code

01001011

01001110

01001111

01010010

01010110

“K”

…

i-1

i

i+1

i+2

i+3

5

“V”

“R”

3

7

“O”

“N”

…

…

…

…

…

…

…

…

…

…

5

bitTreeSearch(K)

		R = record R0;

		for (i = 1; i < m; i++)

			if the Di bit in K is 1

				R = Ri;

			else skip all following D-bits until a smaller D-bit is found;

		read record R from the data file;

		if (K == key from record R)

			return R;

		else

			return –1; //error condition

The Family of B-Trees - 13

_1086355021.unknown

_1086355820.unknown

_1086355620.unknown

_1086111468.unknown

