

1. (20 points)

Shown below is a BST which has become unbalanced after a series of insertions and deletions. Rebalance the BST using the DSW algorithm. Clearly show the following in your answer:

· The initial backbone. The values of n and m as defined by the algorithm.

· The initial set of rotations (those which occur outside of the loop in the DSW algorithm).

· Show the rotations performed in each iteration of the algorithm leading to the perfectly balanced BST.

Backbone is:

Value of n = 9, m =
[image: image1.wmf]ë

û

1

2

1

n

2

-

+

)

(

log

 = 23-1 = 7

Number of initial rotations is given by n – m = 2

Thus, first rotate 18 about 15 and 32 about 22

Backbone after initial 2 rotations

First iteration causes m = 7/2 = 3 rotations

32 about 18, 45 about 35, and 50 about 47.

Next iteration sets m = 3/2 = 1 rotation, 45 about 32 to produce the final perfectly

balance tree.

2. (15 points)

Shown below is a splay tree. Assuming that a get(34) operation is performed on this tree. (a) Identify the splay node and its level in the tree, and (b) perform the splay operation and redraw the tree in the configuration that will result after the splay operation is completed.

The search for 34 is unsuccessful, thus 31 becomes the splay node. The splay node is at level 6, thus it will require 2 two-level splay steps, and 1 one-level splay step to move the splay node to level 1 (the root level). Step 1 will be an RL splay step since the splay node is the left child of its parent and its parent is the right child of the splay node’s grandparent. This splay step produces the following tree.

The next splay step is also a two-level step but this time it is an RR step since the splay node is now the right child of its new parent and its new parent is the right child of the splay node’s new grandparent. The RR splay step will produce the following tree:

At this point the splay node has moved to within one level of level 1 so the final splay step will be a one-level step. Since the splay node is the left child of its parent this final step will be an L splay step which produces the final splay tree shown below.

3. (15 points)

Shown below is an AVL tree. (a) Shown that the tree is balanced by clearly indicating the balance factor for each node in the tree. (b) Insert a new node with key value 56 into the tree and show by redrawing the tree that it is no longer balanced. (c) Perform the necessary rotation(s) which will rebalance the tree and demonstrate that it is balanced by indicating the balance factor for each node in the tree in your final tree.

Balance factors in initial tree (shown as key value/balance factor) indicate tree is balanced.

When new node with key value 56 is inserted into the tree it becomes unbalanced in right side.

Since the new node is inserted into the right subtree of its parent and its parent is a left child of the grandparent of the new node, a double rotation will be required to rebalance the tree. The double rotation is 56 about 54 followed by 56 about 58. The final tree is shown below.

4. (10 points)

Shown below is a four-level irregular skip list.

(a) Assuming that we are searching for the value 23, list the exact sequence in which the nodes of the list are visited during this search.

(b) Assuming that we are searching for the value 49, list the exact sequence in which the nodes of the list are visited during this search.

(a) header, 38, header, 9, 18, 38, 18, 26, 18, 23 (success)

(b) header, 38, tail, 38, tail, 38, tail, 38, 41, tail (fail)

5. (15 points)

Shown on the next page is a three-level regular skip list. Redraw the skip list to demonstrate the changes that will occur to the structure when a new node with value 28 is added to the list. Please draw the resulting structure as neatly as possible.

6. (15 points)

The red-black tree shown below has become imbalanced due to an insertion.

(a) Determine which node was inserted that caused the imbalance and identify the type of imbalance that has occurred.

(b) Rebalance the tree using the appropriate technique for the type of imbalance that has occurred and redraw the balanced tree.

Insertion of node with key value 50 has caused the imbalance.

The imbalance is of type RLb since the new node is the left child of its parent and its parent is the right child of the new node’s grandparent and the other child of the grandparent is a black node. To rebalance the tree a double rotation of the parent of the new node about the grandparent of the new node is required. This will be followed by a recoloring of the both the parent and grandparent of the new node to black. This will rebalance the tree and is shown below:

7. (10 points)

Recall that a Toeplitz matrix can be represented as a sparse matrix since the elements in every diagonal of this type of matrix have the same value (hint).

(a) Using the matrix blank below, generate an arbitrary 5(5 Toeplitz matrix.

(b) Show the linked list implementation of your Toeplitz matrix represented as a sparse matrix.

(a) One example Toeplitz matrix with no duplicates

	5
	6
	7
	8
	9

	4
	5
	6
	7
	8

	3
	4
	5
	6
	7

	2
	3
	4
	5
	6

	1
	2
	3
	4
	5

(b) Linked list implementation of the sparse representation of your matrix.

COP 3530 – Summer 2002 Midterm Exam

June 17, 2002				

						Name:

100 points total

35

22

15

32

18

45

69

50

47

20

12

55

25

37

31

65

62

75

90

50/+2

40/0

60/-1

75/0

69/0

83/0

30/0

46/0

58/-2

54/+1

41

38

26

23

18

14

10

9

7

4

80

75

60

40

30

24

20

90

35

25

45

55

30

50

15

18

KEY

15

18

22

32

35

45

47

50

69

69

50

47

45

35

32

22

18

15

69

50

47

45

35

32

22

18

15

69

50

47

45

35

32

18

22

15

69

50

47

45

35

32

18

22

15

18

90

75

62

65

25

37

315

20

12

55

25

90

75

62

65

18

20

12

37

31

55

25

90

75

62

65

18

20

12

37

31

55

54/0

56/0

46/0

30/0

40/0

83/0

69/0

75/0

60/0

50/+1

58/0

90

80

75

60

40

30

24

20

28

Solution shown is the simple case when the list is allowed to become irregular. If list must remain regular then the structure must increase in height by one level since it is currently full (prior to insert), followed by the actual insertion

15

45

30

55

50

25

35

row

column

value

pointer

header

5

1

1

3

1

3

4

1

2

2

1

4

1

1

5

6

2

1

7

3

1

8

4

1

9

5

1

null

56/0

54/0

58/-1

46/0

30/0

40/0

83/0

69/0

75/0

60/0

50/+1

PAGE
6

_1086026770.unknown

