COP 3503 Honors — Homework 2 (Non-Collaborative)
Due Date: September 25, 2023

Please refer to the attached handout on the maximum-subarray problem.

Write pseudocode for the brute force method of solving the maximum-subarray
problem. Your procedure should run in ©(n?) time (15 pts).

Implement both the brute force and recursive algorithms for the maximum-subarray
problem (use any programming language you wish). What problem size ng gives the
crossover point at which the recursive algorithm beats the brute force algorithm? Then
change the base case of the recursive algorithm to use the brute force algorithm
whenever the problem is less than ng. Does that change the crossover point? Please
provide a listing of your code when you hand in the assignment (20 pts).

How would you modify the QUICKSORT algorithm so that it sorts the numbers in
nonincreasing order? Provide pseudocode for your solution (15 pts).

————

Chapter 4 Divide-and-Conquer

4.1 The maximum-subarray problem

Suppose that you have been offered the opportunity to invest in the Volatile Chem-
ical Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100 per
share. Of course, you would want to “buy low, sell high”—buy at the lowest pos-
sible price and later on sell at the highest possible price—to maximize your profit.
Unfortunately, you might not be able to buy at the lowest price and then sell at the
highest price within a given period. In Figure 4.1, the lowest price occurs after
day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy to determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample.

120

110

100

90

80

70

60 T T T T T T T T T T T T T T T T Siea
0 1 2 3 4 5 6 7 8 9 10 I1 12 13 14 15 16

Da?y [0 1 2 3 4 5 6 78 910 11 12 13 14 15 16

Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Change 13 -3 -25 20 -3 —16 —23 18 20 =7 12 -5 -22 15 —4 7

Figure4.1 Information about the price of stock in the Volatile Chemical Corporation after the close
of 'tradmg over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical
axis shows the price. The bottom row of the table gives the change in price from the previous day.

4.1 The maximum-subarray problem

Figure 4.2 An example showing that the maximum profit does not always start at the lowest price
or end at the highest price. Again, the horizontal axis indicates the day, and the vertical axis shows
the price. Here, the maximum profit of $3 per share would be earned by buying after day 2 and
selling after day 3. The price of $7 after day 2 is not the lowest price overall, and the price of $10
after day 3 is not the highest price overall.

demonstrating that the maximum profit sometimes comes neither by buying at the
lowest price nor by selling at the highest price.
A brute-force solution

We can easily devise a brute-force solution to this problem: just try every possible
pair of buy and sell dates in which the buy date precedes the sell date. A period of n

days has (}) such pairs of dates. Since (2) is ©(n?), and the best we can hope for
is to evaluate each pair of dates in constant time, this approach would take Qn?)
time. Can we do better?

A transformation

In order to design an algorithm with an o(n?) running time, we will look at the
input in a slightly different way. We want to find a sequence of days over which
the net change from the first day to the last is maximum. Instead of looking at the
daily prices, let us instead consider the daily change in price, where the change on
day i is the difference between the prices after day i — 1 and after day i. The table
in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as
an array A, shown in Figure 4.3, we now want to find the nonempty, contiguous
subarray of A whose values have the largest sum. We call this contiguous subarray
the maximum subarray. For example, in the array of Figure 4.3, the maximum
subarray of A[1..16] is A[8..11], with the sum 43. Thus, you would want to buy
the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a
profit of $43 per share.

At first glance, this transformation does not help. We still need to check

(";1) = ©(n?) subarrays for a period of n days. Exercise 4.1-2 asks you to show

________———————d

Chapter 4 Divide-and-Conquer

1 2 3 4 5 6 7 g 9 10 11 12 13 14 15 16

 BE [Reas BT[] S22 [4] 7]

maximum subarray

Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subar-

ray A[8.. 11], with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ©(n?) subarray sums, we can orga-
nize the computation so that each subarray sum takes O(1) time, given the values
of previously computed subarray sums, so that the brute-force solution takes O(n?)

time.
So let us seek a more efficient solution to the maximum-subarray problem.

When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the

maximum sum.
The maximum-subarray problem is interesting only when the array contains
ies were nonnegative, then the

some negative numbers. If all the array entrl
maximum-subarray problem would present no challenge, since the entire array

would give the greatest sum.

A solution using divide-and-conquer

Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose We want to find a maximum subar-
ray of the subarray Allow . . high]. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays Aflow . . mid)
and A[mid + 1..high]. As Figure 4.4(a) shows, any contiguous subarray Al .. jl
of Allow . .high] must lie in exactly one of the following places:

« entirely in the subarray Allow .. mid], so that low = i <j <mid,
« entirely in the subarray A[mid + 1. high, so that mid < i < j < high,or
« crossing the midpoint, so that low <i <mid < j < high.

Therefore, a maximum subarray of Allow . . high] must lie in exactly one of these
places. In fact, a maximum subarray of Allow . . high] must have the greatest
sum over all subarrays entirely in A[low . _mid), entirely in A[mid + 1. . high.
or crossing the midpoint. We can find maximum subarrays of A[low . .mid] and
Almid+1. . high) recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find &

4.1 The maximum-subarray problem

crosses the midpoint Almid +1.. 7

low T high low i mid e ;
e =0 LTI TTTT] HEET
Sc~—————— mid +1 S~ S—————mid + 1 J

entirely in Aflow..mid) entirely in Almid + 1. . high) Ali .. mid]
(2) (b)

Figure 4.4 (a) Possible locations of subarrays of Aflow . high]: entirely in Allow . . mid), entirely
in Almid + 1., high], or crossing the midpoint mid. (b) Any subarray of Aflow . - high] crossing
the midpoint comprises two subarrays Ali .. mid] and Almid 4 1. j], where low =i < mid and
mid < | < high.

maximum subarray that crosses the midpoint, and take 2 subarray with the largest
sum of the three.

We can easily find a maximum subarray crossing the midpoint in time linear
in the size of the subarray A[low . . high]. This problem is not a smaller instance
of our original problem, because it has the added restriction that the subarray it
chooses must cross the midpoint. As Figure 4.4(b) shows, any subarray crossing
the midpoint is itself made of two subarrays A[i . . mid]| and A[mid + 1 .. J1, where
low <i < mid and mid < j < high. Therefore, we Jjust need to find maximum
subarrays of the form Ali .. mid] and A[mid 4 1.. j] and then combine them. The
procedure FIND-MAX-CROSSING—SUBARRAY takes as input the array A and the
indices low, mid, and high, and it returns a tuple containing the indices demarcating
a maximum subarray that crosses the midpoint, along with the sum of the values in
a maximum subarray.

FIND-MAX-CROSSING-S UBARRAY (4, low, mid, high)
U left-sum = —o0

2 sum = (

3 fori = miqg downto /low

4 sum = sum + A[i]

5 if sum > lefr-sum

6 left-sum = sum

7 max-left = |

8 right-sum = —oo

9 sum =0
10 for j = mid +1to high
11 Sum = sum + A[]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)

Chapter 4 Divide-and-Conquer

This procedure works as follows. Lines 1-7 find a maximum subarray of the
left half, A[low ..mid). Since this subarray must contain A[mid], the for loop of
lines 3—7 starts the index i at mid and works down to low, so that every subarray
it considers is of the form A[i ..mid]. Lines 1-2 initialize the variables left-sum,
which holds the greatest sum found so far, and sum, holding the sum of the entries
in Ali ..mid]. Whenever we find, in line 5, a subarray A[i ..mid] with a sum of
values greater than left-sum, we update left-sum to this subarray’s sum in line 6, and
in line 7 we update the variable max-left to record this index i. Lines 8-14 work
analogously for the right half, A[mid + 1 .. high]. Here, the for loop of lines 10-14
starts the index j at mid+1 and works up to high, so that every subarray it considers
is of the form A[mid + 1..j]. Finally, line 15 returns the indices max-left and
max-right that demarcate a maximum subarray crossing the midpoint, along with
the sum left-sum + right-sum of the values in the subarray A[max-left .. max-right].
If the subarray Al[low .. high] contains 7 entries (so that n = high —low + 1),
we claim that the call FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)
takes ©(n) time. Since each iteration of each of the two for loops takes ©(1)
time, we just need to count up how many iterations there are altogether. The for
loop of lines 3—7 makes mid — low + 1 iterations, and the for loop of lines 10-14
makes high — mid iterations, and so the total number of iterations 1s

(mid — low + 1) + (high — mid) = high—low+1

= n.

With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in hand, we
can write pseudocode for a divide-and-conquer algorithm to solve the maximum-

subarray problem:

FIND-MAXIMUM-SUBARRAY (4, low, high)
1 if high ==low
2 return (low, high, Allow))
3 else mid = |(low + high)/2]
4 (left-low,left—high,leﬁ-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)
5 (right—low,right-high,right—sum) =
FIND-MAXIMUM-SUBARRAY (4, mid + 1, high)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high. right-sum)
else return (cross-low, cross-high, cross-sum)

// base case: only one element

=)}

—
— O O 0]

4.1 The maximum-subarray problem

The initial call FIND-MAXIMUM-SUBARRAY (4, 1, A.length) will find a maxi-
mum subarray of A[1..n].

Similar to FIND-MAX-CROSSING-SUBARRAY, the recursive procedure FIND-
MAXIMUM-SUBARRAY returns a tuple containing the indices that demarcate a
maximum subarray, along with the sum of the values in a maximum subarray.
Line 1 tests for the base case, where the subarray has just one element. A subar-
ray with just one element has only one subarray —itself—and so line 2 returns a
tuple with the starting and ending indices of just the one element, along with its
value. Lines 3—11 handle the recursive case. Line 3 does the divide part, comput-
ing the index mid of the midpoint. Let’s refer to the subarray A[low ..mid] as the
left subarray and to A[mid + 1 .. high] as the right subarray. Because we know
that the subarray A[low .. high] contains at least two elements, each of the left and
right subarrays must have at least one element. Lines 4 and 5 conquer by recur-
sively finding maximum subarrays within the left and right subarrays, respectively.
Lines 611 form the combine part. Line 6 finds a maximum subarray that crosses
the midpoint. (Recall that because line 6 solves a subproblem that is not a smaller
instance of the original problem, we consider it to be in the combine part.) Line 7
tests whether the left subarray contains a subarray with the maximum sum, and
line 8 returns that maximum subarray. Otherwise, line 9 tests whether the right
subarray contains a subarray with the maximum sum, and line 10 returns that max-
imum subarray. If neither the left nor right subarrays contain a subarray achieving
the maximum sum, then a maximum subarray must cross the midpoint, and line 11
returns it.

Analyzing the divide-and-conquer algorithm

Next we set up a recurrence that describes the running time of the recursive FIND-
MAXIMUM-SUBARRAY procedure. As we did when we analyzed merge sort in
Section 2.3.2, we make the simplifying assumption that the original problem size
is a power of 2, so that all subproblem sizes are integers. We denote by T'(n) the
running time of FIND-MAXIMUM-SUBARRAY on a subarray of n elements. For
starters, line 1 takes constant time. The base case, when n = 1, is easy: line 2
takes constant time, and so

() = 6(1) . (4.5)

The recursive case occurs when n > 1. Lines 1 and 3 take constant time. Each
of the subproblems solved in lines 4 and 5 is on a subarray of n/2 elements (our
assumption that the original problem size is a power of 2 ensures that n/2 is an
integer), and so we spend T (n/2) time solving each of them. Because we have
to solve two subproblems—for the left subarray and for the right subarray —the
contribution to the running time from lines 4 and 5 comes to 27 (n/2). As we have

