1. Problem 3-3(a) in Cormen et al. (pg. 61-62). Do not rank the iterated log functions. Make sure to justify the rankings. Hint: Using limits and L’Hospital’s rule can be useful here.

2. You are given the following function that takes a nonnegative integer as an argument and returns an integer.

 \[
 F(i) \begin{cases}
 1 & \text{if } (i = 0) \\
 2 & \text{return } 1 \\
 3 & \text{return } (2 \times F(i - 1))
 \end{cases}
 \]

 (a) Analyze the running time of the function F. State your assumptions clearly.
 (b) Give a function FNEW(i) that always returns the same value as F(i) but has lower time complexity. Analyze its running time.

3. Solve the following recurrences and justify your answers
 (a) Use the iteration method or a recursion tree

 - \[T(n) = 2T(n - 2) + n \]
 - \[T(n) = 3T(\sqrt{n}) + \lg n \]

 (b) Use the substitution method

 - \[T(n) = 2T(\sqrt{n}) + n, \ T(2) = 2 \ (\text{Guess: } T(n) = \Theta(n)) \]
 - \[T(n) = 2T(\sqrt{n}) + \lg n, \ T(1) = 1 \ (\text{Guess: } T(n) = \Theta(\lg n \lg \lg n)) \]

 (c) Use the Master Method (find tight asymptotic bounds)

 - \[T(n) = 2T(n/2) + n^3 \]
 - \[T(n) = T(9n/10) + n \]
 - \[T(n) = 16T(n/4) + n^2 \]
 - \[T(n) = 7T(n/2) + n^2 \]

4. Describe a \(\Theta(n \lg n) \)-time algorithm that, given a set S of \(n \) integers and another \(x \), determine whether or not there exist two elements in S whose sum is exactly \(x \).