
Introduction
In the previous three sections of Java notes you were introduced to the basics of classes and methods in the Java language. This set of notes examines how basic I/O in Java is handled.

The Basics

At the highest level Java makes a distinction between the stream classes which handle binary 8-bit quantities, and the reader/writer classes which manipulate string and 16-bit Unicode character values. Underneath each of these classes is a vast array of subclasses (more than 40 by last count) which actually handle the I/O.

A stream is simply an object for transmitting or retrieving 8-bit (byte) values with the emphasis placed on the action of reading or writing rather than on the data itself. A file is a collection of items stored on an external device and can be accessed in several different fashions. For example, a FileStream provides the capability of accessing the data values which are in a file but it does not actually hold any of the file contents. A stream is always a pipeline for transmitting 8-bit values, however, much of the functionality provided by the different stream abstractions in Java is intended to allow the programmer to think in terms of higher level units such as, transmitting strings or integers or object values, instead of their 8-bit internal representations. For example, the method readInt() which is found in the class DataInputStream processes four 8-bit values in the process of reading a single 32-bit integer value.

Java supports two independent, but largely parallel, I/O systems. The hierarchy rooted in the two classes InputStream and OutputStream are used to read and write 8-bit quantities. Until Unicode becomes much more prevalent the parallel hierarchy rooted in the two classes Reader and Writer will be less commonly used than the previous two classes. In this set of notes, we will focus first on the stream classes and then on the reader/writer classes.

The differences in the various input stream classes are seen more readily if they are divided into two broad categories, those classes which are tied to a physical input source and those which read from input streams which are virtual. The virtual streams depend upon a second input stream for the actual reading operations but in some way extend the functionality of the input stream. For example such a class might extend the functionality of the read operation by allowing values in the stream to be unconsumed (i.e., pushed back to the source) if desired. We will not look at the virtual stream classes. The physical input source classes read values from byte arrays, files, or pipes. We will focus here, on the file as the input source.

Physical Input Streams
There are three input stream classes that read from actual data areas. These are distinguished by their names and the arguments used in their constructors. These are summarized below:

ByteArrayInputStream (byte [] buffer);

ByteArrayInputStream (byte [] buffer, int offset, int count);

FileInputStream (File f);

FileInputStream (String fileName);

PipedInputStream (PipedOuputStream p);

For simple reading and writing, a FileInputStream or FileOutputStream can be manipulated without first creating a File object. Generally, a File object is necessary only if you are manipulating the file itself, such as renaming the file or deleting the file. If you need to test the file to determine if it is readable or writable, then a File object must be instantiated.

The file I/O system of Java is contained in the package java.io and this package should be imported into your program using the import statement.

Import java.io.*;

How To Read In Character Data From the Keyboard
System.in is an instance of InputStream so you automatically have access to the methods defined in InputStream. There is however, only one input method defined in this class, read(), which reads bytes. When reading from System.in pressing the ENTER key generates an end-of-stream condition. Below is an example:

//read an array of bytes from System.in

import java.io.*;

class SampleReadBytes

{
public static void main(String args[]) throws IOException

{
byte my_data[] = new byte[15];

System.out.println(“Enter some characters please.”);

System.in.read(my_data); //reads an array of bytes

System.out.print(“Your input was: “);

for (int i=0; i < my_data.length; i++)

System.out.print((char) my_data[i]);

}

}

The output from the execution of this program is:

Reading and Writing Files Using Byte Streams
In Java, all files are byte-oriented and many methods are available to read and write bytes to and from a file. The use of byte streams for this purpose is very common, however, Java also allows you to wrap a byte-oriented file stream within a character-based object to add functionality to the byte-oriented stream; we’ll look at this later. Most of the reading and writing files is easiest to illustrate through examples, so that’s what I’ll do mostly with some comments thrown in to mention some of the highlights of the techniques. We’ll look at text files first followed by binary files.

Example: Using read() to input values from a text file.

// Program which prints the contents of a text file to illustrate reading

//Usage: java DisplayFile <filename>

import java.io.*;

class DisplayFile

{
public static void main (String args []) throws IOException

{
int i

FileInputStream the_file;

try

{
the_file = new FileInputStream(args[0]);

}

catch (FileNotFoundException exc)

{ System.out.println(“Couldn’t Find The File”);

 return;

}

catch (ArrayIndexOutOfBoundsException exc)

{ System.out.println(“Format is: DisplayFile <filename>”);

 return:

}

do

{
i = the_file.read(); //read a byte from the file

if (i != -1)

System.out.print((char) i);

} while (i != -1);

the_file.close();

} //end main

} //end DisplayFile

A couple of things are worth mentioning in the above example. Notice that the read() method returns an integer value. Typical implementations will define an integer to be 32 bits or 4 bytes. This is not a contradiction, rather only the low order 8 bits of the integer are used to return the value. If the value returned is equal to –1 then the end of the file has been reached. Since we are reading character data from the file, the integer value being read must be cast to a character. The try/catch blocks are handling the two most common types of errors that might occur with such a program, you can always add more, if other errors are possible when the program is executed.

Writing to an output stream is similar to reading data from an input stream. The output stream is accepting bytes from the program to be written to the output file, one byte at a time. This of course can be tediously slow if large amounts of output are to be generated, so it is very common to buffer the output, sending it to the output file only when the buffer becomes full. The example below illustrates both reading and writing operations on text files using streams. The main difference between this example and the previous example is the addition of more try/catch blocks since exceptions can occur in two files in this program.

Example: Reading a text file and copying its contents to another text file.

//Program to copy a text file into a second text file to illustrate reading and writing

//Usage: java DuplicateFile <source file> <destination file>

import java.io.*;

class DuplicateFile

{
public static void main (String args[]) throws IOException

{
int i;

FileInputStream source;

FileOutputStrean drain;

try

{

try //try to open the source file

{ source = new FileInputStream(args[0]);

}

catch(FileNotFoundException exc)

{ System.out.println(“Didn’t Find Input File”);

 return;

}

try //try to open the drain file

{ drain = new FileOutputStream(args[1]);

}

catch(FileNotFoundException exc)

{ System.out.println(“Error Opening Output File”);

 return;

}

} //end try

catch(ArrayIndexOutOfBoundsException exc)

{ System.out.println(“Format is: DuplicateFile <source> <drain>”);

 return;

}

try //copy the source file to the drain file

{ do

 { i = source.read();

 if (i != -1)

 drain.write(i);

 } while (i != -1);

}

catch(IOException exc)

{ System.out.println(“A File Error Has Occurred…Run For Cover”);

}

source.close();

drain.close();

} //end main

} //end DuplicateFile

Reading and Writing Files Using Reader/Writer Classes
Java’s byte streams are quite useful and you can do some fairly sophisticated things with them and they are quite suitable for many programs, however, they are not the most efficient way to handle character-based I/O. A much better approach to character-based I/O can be found in the character stream classes. At the top of this hierarchy are the abstract Reader and Writer classes.

When reading characters from the keyboard System.in will need to be wrapped inside some type of Reader since System.in is a byte stream. The best class for reading input from the keyboard is BufferedReader which supports a buffered input stream. Precisely because System.in is a byte stream, you cannot construct a BufferedReader directly from System.in. First you must convert it into a character stream. To do this, you use InputStreamReader which converts bytes to characters. To obtain an InputStreamReader object that is linked to System.in, use the following constructor:

InputStreamReader(InputStream <inputstream>)

Since System.in refers to an object of type InputStream it can be used for <inputstream> which produces the following constructor:

InputStreamReader(InputStream System.in)

Now, using the object which is produced by InputStreamReader, construct a BufferedReader using the constructor:

BufferedReader(Reader <inputReader>)

Where <inputReader> is the stream that is linked to the instance of BufferedReader being created. Putting this all together will create a BufferedReader which is connected to the keyboard.

BufferedReader my_reader = new BufferedReader(new InputStreamReader(System.in));

When the statement above is executed, my_reader will be a character-based stream that is linked to the keyboard through System.In.

Once this is done, characters can be read from System.In using the read() method defined by BufferedReader in a way that is quite similar to the way we illustrated first using byte streams. The following example illustrates this capability.

Example: A BufferedReader that reads characters from the keyboard.

//Program to read characters from the keyboard using a BufferedReader

//Format: java ReadCharsFromKeyboard

import java.io.*;

class ReadCharsFromKeyboard

{
public static void main(String args[])
throws IOException

{
char keyboardinput;

BufferedReader my_reader = new BufferedReader(new

InputStreamReader(System.in));

System.out.println(“Enter characters. Use $ to quit.”);

// read the input from the keyboard

do

{ keyboardinput = (char) my_reader.read();

 System.out.println(keyboardinput);

} while (keyboardinput != “$”);

} //end main

} //end ReadCharsFromKeyboard

To read strings rather than single characters from the keyboard make use of the version of the readline() method which is available in the BufferedReader class. This will return a String object which contains characters that were read from the keyboard. The example below will simply read in strings that you input from the keyboard and display them on the screen and repeat this process until the string that you enter from the keyboard is “quit”.

//Program to read strings from the keyboard until the string = “quit” is entered

//Format: java ReadSomeStrings

import java.io.*;

class ReadSomeStrings

{
public static void main(String args []) throws IOException

{
BufferedReader my_reader = new BufferedReader(new

InputStreamReader(System.in));

String a_string;

System.out.println(“Enter some strings please…enter ‘quit’ to end”);

do

{ a_string = my_reader.readLine();

 System.out.println(a_string);

} while (!a_string.equals(“quit”));

} //end main

} //end ReadSomeStrings

Using Type Wrappers To Convert Numeric Strings
The Java println() method which you have used many times provides a simple technique to output various types of data to the screen, including the numeric values of the primitive types int and double. The println() method automatically converts these numeric values into human readable form (i.e., text characters). There is no equivalent input method that will read and convert strings which contain numeric values into their internal binary formats. You can’t enter a string such as “345” from the keyboard and have this automatically converted into its corresponding binary form able to be stored in a variable of type int. To be able to do this you need to utilize Java’s type wrappers.

Type wrappers are classes that encapsulate (wrap) the simple types. Type wrappers are required because the simple types are not objects in Java which in some cases severely limits their use. For example, a simple type cannot be passed by reference. Thus, there is a wrapper class which corresponds to each of the simple types. These type wrapper classes are Double, Long, Integer, Float, Byte, Short, Character, and Boolean. Each of these classes contains a number of methods that allow the simple types to be integrated into the object hierarchy of Java. A side benefit is that the numeric wrapper classes define methods which convert a numeric string into its binary equivalent. These wrapper classes are listed below along with the conversion method used by each class.

	Wrapper
	Conversion Method

	Double
	static double parseDouble(String str) throws NumberFormatException

	Long
	static long parseLong(String str) throws NumberFormatException

	Integer
	static int parseInt(String str) throws NumberFormatException

	Float
	static float parseFloat(String str) throws NumberFormatException

	Byte
	static byte parseByte(String str) throws NumberFormatException

	Short
	static short parseShort(String str) throws NumberFormatException

The parsing methods provide an easy technique to convert the numeric values, read as strings from the keyboard or a text file, into its proper internal format. The following program illustrates both the parseInt() and parseDouble() methods. This program simply averages a list of numbers that is input by the user from the keyboard assuming that the first number is the number of numbers in the list.

//Program to average a list of numbers using a BufferedReader and wrapper class I/O

//Format: java Average

import java.io.*;

class Average

{
public static void main(String args[])
throws IOException

{
BufferedReader my_reader = new BufferedReader(new

InputStreamReader(System.in));

String a_string;

int number_of_numbers;

double the_sum = 0.0;

double the_average, converted_value;

System.out.print(“How many numbers are in your list?: “);

a_string = my_reader.readLine();

try //convert the string input into an integer value

{ number_of_numbers = Integer.parseInt(a_string);

}

catch(NumberFormatException exc)

{ System.out.println(“Wrong Format For Input”);

 number_of_numbers = 0;

}

System.out.println(“Enter your list of numbers now: “);

for(int i = 0; i < number_of_numbers; i++)

{
System.out.print(“Number “ + i + “ :”);

a_string = my_reader.readLine();

try

{ converted_value = Double.ParseDouble(a_string);

}

catch(NumberFormatException exc);

{ System.out.printlin(“You have entered an invalid number”);

 converted_value = 0.0;

}

the_sum += converted_value;

} //end for loop

the_average = the_sum / number_of_numbers;

System.out.println(“The average of your list is” + the_average);

} //end main

} //end Average

The output from the execution of this program is:

Using The Tokenizer Class For I/O
To use the token approach where you basically pick apart the input as it appears on the input line, you insert a stream tokenizer between your input stream reader and your program. In this case you do not need a buffered reader. The technique is similar to that of the buffered reader classes in that you need to create a stream tokenizer which is connected to an input stream reader. To do this you use an expression that creates an instance of the StreamTokenizer class for the input stream reader to which it will be linked. StreamTokenizer instances are calle either stream tokenizers or more commonly tokenizers. This is done in the following manner:

StreamTokenizer my_tokens = new StreamTokenizer(my_reader);

Just as we did before, my_reader will need to be an input stream reader instance which is linked to a particular input stream. If the input stream is to be the keyboard then the instance of my_reader would be instantiated with the following:

InputStreamReader my_reader = new InputStreamReader(System.in);

StreamTokenizer my_tokens = new StreamTokenizer (my_reader);

If the input stream is to be a file then the instance of my_reader would need to be linked to a stream which is connected with a file. This is done as follows:

FileInputStream a_stream = new FileInputStream(<filename>);

InputStreamReader my_reader = new InputStreamReader(a_stream);

StreamTokenizer my_tokens = new StreamTokenizer(my_reader);

In this case, <filename> can be the complete path name of file which is to be used for the input.

Tokenizers treat white space in the stream as delimiters which separate the character sequence into tokens. Thus, a file containing the following characters is viewed as a stream of nine tokens divided by spaces and line-terminating characters:

3 5 6

4 9 10

5 4 1

You can conceptualize a tokenizer as a machine that steps through a stream of tokens. The nextToken() method moves the machine from one token to the next. Let’s assume that we have instantiated an instance of a stream tokenizer to read from an input file (as we did above) and we call the nextToken() method:

my_tokens.nextToken()

The first time that Java executes a call to the nextToken() method, given that the first token is a number, the value of that token is assigned to the nval instance variable in the tokenizer. If we use the sample file shown above, then after this first call executes, my_tokens.nval will be 3. After Java executes the second call to nextToken() the second token is assigned to nval and this time my_tokens.nval will be 5. The value stored in the nval instance variable is always a double, even if what you see in the input file is an integer. The rationale behind this is that you can always cast a double into any other type. Therefore, if your file contains integer values, and you want to work with int values, you will need to cast the number obtained from the nval instance variable, such as: (int) my_tokens.nval.

As the token machine moves down a stream of tokens, eventually it will reach the end of the token stream. At that point the nextToken() method will return the special value which is equal to the value assignes to the TT_EOF instance variable of the tokenizer (TT is an acronym for Token Type). Thus, when nextToken() returns a value equal to the TT_EOF instance variable, there are no more tokens to be read. This means that you can read and process all the integer tokens in a token stream with a simple while loop:

while (my_tokens.nextToken() != my_tokens.TT_EOF)

{
…

…(int) my_tokens.nval …

…

}

The following example will produce a series of int values from the information in a file and simply display them one value to a line. What you actually do with these values will vary depending upon your application.

//Program to illustrate stream tokenizer. Reads a file and prints its contents.

//Format: java tokendemo

import java.io.*;

public class tokendemo

{
public static void main (String args[]) throws IOException

{
FileInputStream a_stream = new FileInputStream(“my_input.data”);

InputStreamReader my_reader = new InputStreamReader(a_stream);

StreamTokenizer my_tokens = new StreamTokenizer(my_reader);

while (my_tokens.nextToken() != my_tokens.TT_EOF)

{
System.out.println(“Integer: “ + (int) my_tokens.nval);

}

a_stream.close();

}

}

A token stream may produce not only number tokens, but also string tokens. Suppose for example, that our data file included strings (using double quotation marks as the delimiter) as well as numbers.

“Polynomial Term One” 8 3

“Polynomial Term Two” -3 3

“Polynomial Term Three” 1 4

When there are no more tokens in a file the nextToken() method returns the value of the TT_EOF instance variable. If in fact there are more tokens in the file, the value returned by nextToken() depends on whether the token is a number or a string. If the token is a number, then nextToken() returns the value of the TT_NUMBER instance variable, if the token is a string, then nextToken() returns the value of the TT_WORD instance variable.

Whenever the token is a white space delimited string, that token is assigned to the sval instance variable of the tokenizer. Using the sample file above that contains strings and numbers, when Java first executes the first call to nextToken() the value of the token will be assigned to the sval instance variable of the tokenizer which in this case would be: my_tokens.sval = “Polynomial”. After the second call to nextToken() the assignment would produce my_tokens.sval = “Term”. Not until the fourth call to nextToken() would my_tokens.nval = 8. The example on the next page illustrates reading from a file containing both strings and numbers. What you do with each type of input is, of course, application dependent. In the example, numbers are printed and strings are ignored, you may do something with both.

This concludes our brief look at the basics of file based I/O in Java. It wound up being a bit more complete than I had originally planned so I hope that some of this information will be helpful to you as you continue to program in Java. One of the things that might be a bit clearer to you now is that to become a skilled Java programmer you need to become familiar with the class hierarchy in Java so that you can build the type of object that you need to perform the functions you desire. Although not strictly part of the file I/O in Java, in several of the examples above, I included some exception handling so that you could see a little bit about how errors are handled in Java. The try/catch blocks are Java’s technique for dealing with run-time errors. I hope that this did not cause confusion in understanding how the I/O in Java is handled, if it does you can simply removed the exception handling code to make the I/O more easily understood. I may decide to add one more set of notes that deal with exception handling in Java, if so this would be the fifth and final set of Java notes for the course.
//Program to illustrate stream tokenizer with strings and numbers in the input file.

// In this case, strings are ignored and numbers are printed.

//Format: java anothertokendemo

import java.io.*;

public class anothertokendemo

{
public static void main (String args[]) throws IOException

{
FileInputStream a_stream = new FileInputStream(“my_input.data”);

InputStreamReader my_reader = new InputStreamReader(a_stream);

StreamTokenizer my_tokens = new StreamTokenizer(my_reader);

int next = 0;

while ((next = my_tokens.nextToken()) != my_tokens.TT_EOF)

{ switch (next)

 { case my_tokens.TT_WORD: break;

 case my_tokens.TT_NUMBER:

int coef = (int) my_tokens.nval;

my_tokens.nextToken();

int exp = (int) my_tokens.nval;

System.out.println(“Coefficient: “ + coef + “Exponent: “+ exp);

break;

 }

}

a_stream.close();

}

}

Enter some characters please.

This is a test!

Your input was: This is a test!

How many numbers are in your list?: 4

Enter your list of numbers now:

Number 1: 4.6

Number 2: 5.8

Number 3: 23.5

Number 4: 17.4

The average of your list is 12.825

COP 3503 – Computer Science II – Java Notes #4

I/O in Java

COP 3503 – Java Notes #4- 13

